МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИИ Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Национальный исследовательский технологический университет «МИСиС» Новотроицкий филиал

Кафедра математики и естествознания

А.В. Швалёва Т.П. Филоненко

математический анализ

ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Учебно-методическое пособие

Рецензенты:

Соколов А.А., кандидат физико-математических наук, доцент кафедры общеобразовательных и профессиональных дисциплин Орского филиала ФГАОУ ВПО «Самарский государственный университет путей сообщения»

Изаак Д.Д., старший преподаватель кафедры математики и естествознания ФГАОУ ВПО «Национальный исследовательский технологический университет «МИСиС» Новотроицкий филиал

Швалёва, А.В. Математический анализ. Введение в математический анализ: учебно-методическое пособие / А.В. Швалёва, Т.П. Филоненко. — Новотроицк.: НФ НИТУ «МИСиС», 2013. — 72 с.

В учебно-методическом пособии рассмотрены теоретические сведения (определения, формулы, теоремы) по разделу «Введение в математический анализ», а также достаточное число примеров с подробным решением. Пособие предназначено для обеспечения самостоятельной работы студентов заочной формы обучения и ориентировано, прежде всего, на студентов технических специальностей.

Рекомендовано Методическим советом НФ НИТУ «МИСиС»

- © Новотроицкий филиал ФГАОУ ВПО «Национальный исследовательский технологический университет "МИСиС", 2013
- © Швалёва А.В., 2013
- © Филоненко Т.П., 2013

ОГЛАВЛЕНИЕ

Введение	4
Глава 1. Множества. Числовые последовательности	5
1.1 Множество. Операции над множествами	5
1.2 Числовая последовательность. Основные понятия	9
1.3 Свойства числовых последовательностей	11
1.4 Предел последовательности	13
1.5 Бесконечно большие и бесконечно малые последователь-	
ности, их свойства	17
1.6 Второй замечательный предел. Число e	20
1.7 Числовые последовательности и их пределы в задачах	21
Глава II. Функция. Её предел и непрерывность	30
2.1 Функция, её свойства	30
2.2 Предел функции в точке, его геометрический смысл	35
2.3 Бесконечно большие и бесконечно малые функции и их	
свойства	40
2.4 Основные теоремы о пределах. Замечательные пределы	
математического анализа	43
2.5 Сравнение бесконечно малых	44
2.6 Непрерывность и точки разрыва функции	46
2.7 Функция и её предел в задачах	53
Глава III. Содержание контрольной работы № 1	54
Библиографический список	71

Введение

Данное учебно-методическое пособие написано авторами на основе опыта чтения лекций, ведения практических занятий по математике для студентов заочной формы обучения. Авторы пособия предлагают вам помощь в изучении учебного курса: «Математика ч.1» («Высшая математика ч.1») в виде учебнометодического пособия «Математический анализ. Введение в математический анализ».

Пособие содержит минимальный объем теоретического материала с подробным разбором решения типовых задач по темам:

- Множества. Числовые последовательности;
- Функция. Её предел и непрерывность.

На основе данных тем составлена контрольная работа № 1.

В начале каждой темы кратко излагаются основные теоретические сведения (определения, теоремы, формулы), необходимые для решения задач. Формулировки определений и теорем в основном приведены по книге, которая предлагается как основной учебник для студентов нашего филиала всех технических направлений: Шипачев, В. С. Высшая математика [Текст]: учебник для вузов / В. С. Шипачев. – М.: Высшая школа, 2001. - 479 c.

В пособии приводятся решения типовых задач, а также предлагаются задачи для самостоятельного решения. При подборе задач были использованы различные сборники задач, которые указаны в библиографическом списке.

Пособие может быть использовано как для изучения перечисленных тем на практических занятиях под руководством преподавателя, так и для самостоятельного изучения данного материала.

Прежде чем приступать к выполнению контрольной работы № 1, убедительно просим вас познакомится с данным пособием. Изучите теоретическую часть необходимой вам темы, разберите решения предлагаемых примеров, выполните примеры для самостоятельной работы. Если у вас не возникло вопросов, то вы можете приступать к выполнению контрольной работы № 1. Все вопросы, возникающие при подготовке, вы можете задать преподавателю на индивидуальной консультации.

Авторы выражают надежду, что это учебно-методическое пособие существенно поможет студентам в изучении основ высшей математики и выполнении контрольной работы N 1.

ГЛАВА І. МНОЖЕСТВА. ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ

1.1 Множество. Операции над множествами

Одним из основных понятий математики является множество. Понятие множества (как и понятия точки, числа, и т.д.) является аксиоматическим, то есть не имеющим определения. Объекты, составляющие множество, называются его элементами. Множества могут состоять из объектов самой различной природы. Их элементами могут быть буквы, числа, атомы, уравнения, углы и т.д. В качестве примеров можно привести следующие: множество студентов на курсе, множество клеток человеческого организма, множество всех треугольников на плоскости и т.д.

Множество может быть задано перечислением его элементов: $M = \{1, 2\}$. Но не все множества можно задать списком. Если во множестве бесконечное количество элементов, то такой список составить нельзя. Множество считается заданным, если указано некоторое свойство, которым обладают все его элементы и не обладают никакие другие объекты. Такое свойство называется характеристическим свойством множества: $M = \{x|, P(x)\}$. Например, $A = \{x|, x^2 - 5x + 6 = 0\}$, то есть множество A состоящее из элементов x, удовлетворяющих уравнению $x^2 - 5x + 6 = 0$. Предложенное множество A можно задать и перечислением элементов $A = \{2,3\}$.

Множества обозначаются заглавными буквами латинского алфавита, его элементы — строчечными. Если a — элемент множества A, то символически это можно записать следующим образом: $a \in A$, если элемент a не принадлежит множеству A, то это обозначают $a \notin A$.

Определение 1.1.1. Множество, не содержащее ни одного элемента, называют пустым множеством и обозначают $\{\emptyset\}$.

Определение 1.1.2. Если каждый элемент множества A является в то же время элементом множества B, то говорят, что A — подмножество множества B и обозначают: $A \subset B$.

Каждое непустое множество A имеет по крайней мере два подмножества: пустое множество $\{\varnothing\}$ и само множество A. Пустое множество является подмножеством любого множества.

Приведем примеры подмножеств:

1)
$$B = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{2, 3\},$$
 тогда $A \subset B$

2) множество всех равнобедренных треугольников является подмножеством множества всех треугольников и др.

Графической интерпретацией отношения $A \subset B$ может служить диаграмма Эйлера-Венна (рисунок 1.1.1).

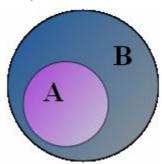


Рисунок 1.1.1 – Графическая интерпретация отношения $A \subset B$

Операции над множествами

Над множествами можно совершать различные операции, в результате которых из исходных множеств получаются новые. Рассмотрим некоторые из них.

Определение 1.1.3. Объединением двух множеств A и B, называют множество X, состоящее из элементов, которые входят хотя бы в одно из этих множеств.

Обозначение: $A \cup B = \{x | x \in A \quad unu \quad x \in B\}$

Пример: $A = \{1, 2, 3\}, B = \{8, 9\}.$ Тогда $A \cup B = \{1, 2, 3, 8, 9\}$

Определение 1.1.4. Пересечением двух множеств A и B называют множество X, содержащие только те элементы, которые входят и во множество A и во множество B.

Обозначение: $A \cap B = \{x | x \in A \mid u \mid x \in B\}$

Пример: $A = \{1, 2, 3\}, B = \{1, 2, 8, 9\}$. Тогда $A \cap B = \{1, 2\}$

Определение 1.1.5. Разностью двух множеств A и B называют множество X, в которое входят все элементы множества A, не принадлежащие множеству B.

Обозначение: $A/B = \{x | x \in A \quad u \quad x \notin B\}$

Пример: $A = \{1,2,3\}$, $B = \{1,2,8,9\}$. Тогда $A/B = \{3\}$.

Определение 1.1.6. Декартовым произведением двух множеств A и B называют множество X, состоящее из пар (x, y), где x из множества A, а y из множества B.

Обозначение: $A \times B = \{(x, y) | x \in A, y \in B\}$

Для лучшего понимания смысла этих операций используются диаграммы Эйлера-Венна (рисунок 1.1.2).

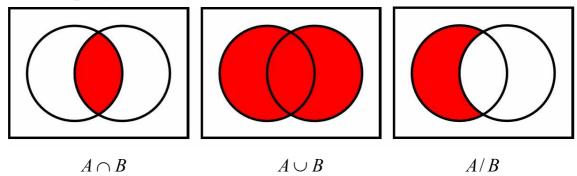


Рисунок 1.1.2. – Графическая интерпретация операций над множествами

В математике особую роль играют множества, элементами которых являются числа, это так называемые *числовые множества*. Рассмотрим примеры числовых множеств.

- 1. Множество натуральных чисел $N = \{1; 2; 3; 4; 5...; n;\}$. Данное множество имеет наименьший элемент; не имеет наибольшего элемента; упорядоченное; не плотное.
- 2. Множество целых чисел $Z = \{...-3;-2;-1;0;1;2;3;....\}$, то есть множество, которое получается как объединение множества натуральных чисел, множества противоположных чисел и нуля. Данное множество не имеет ни наименьшего, ни наибольшего элементов, упорядоченное, не плотное.
- 3. Множество рациональных чисел $Q = \left\{ \frac{m}{n} \middle|, m \in \mathbb{Z}, n \in \mathbb{N} \right\}$. Данное множество не имеет ни наименьшего, ни наибольшего элементов; упорядоченное; плотное (то есть для любых элементов p и $q \in Q$, найдется хотя бы одно рациональное число $a \in Q$, которое можно поместить между p и q, то есть p < a < q). Рациональные числа могут быть представлены в виде конечных или бесконечных периодических дробей $(0,(35) = \frac{35}{99};\ 0,3 = \frac{3}{10})$

- 4. Числа, которые представляются бесконечными, но непериодическими десятичными дробями, называются иррациональными числами. Множество иррациональных чисел символически обозначается I.
- 5. Объединение рациональных и иррациональных чисел называется множеством действительных чисел и обозначается $R = Q \cup I$. Данное множество не имеет ни наибольшего, ни наименьшего элементов, упорядоченное, плотное.

Наряду с перечисленными числовыми множествами, часто употребляемыми являются также отрезок и интервал.

Определение 1.1.7. Пусть даны два числа a и b, причем a < b. Отрезком (сегментом) называется множество таких x, для которых выполняется неравенство $a \le x \le b$.

Обозначение: $[a,b] = \{x|, a \le x \le b\}$.

Определение 1.1.8. Пусть даны два числа a и b, причем a < b. Интервалом называется множество таких x, для которых выполняется неравенство a < x < b.

Обозначение: $(a,b) = \{x | , a < x < b\}.$

Определение 1.1.9. Бесконечными интервалами называются множества таких x, для которых выполняются неравенства x > a; $x \ge a$; x < b; $x \le b$

Определение 1.1.10. Окрестностью точки x_0 во множестве действительных чисел R, называется любой интервал, содержащий точку x_0 .

Все рассмотренные множества называются промежутками.

Грани числовых множеств

Определение 1.1.10. Числовое множество A называется ограниченным сверху, если существует такое число C, что для любого элемента $x \in A$ выполняется неравенство: $x \le C$.

Число C называется верхней гранью множества.

Если множество ограничено сверху, то оно имеет бесчисленное множество верхних граней.

Наименьшая из верхних граней множества называется *точной верхней гранью* множества и обозначается SupA (от латинского supremum — наивысший).

Определение 1.1.11. Числовое множество A называется ограниченным снизу, если существует такое число c, что для любого элемента $x \in A$ выполняется неравенство: $x \ge c$.

Число c называется нижней гранью множества.

Если множество ограничено снизу, то оно имеет бесчисленное множество нижних граней.

Наибольшая из нижних граней множества называется *точной нижней* гранью множества и обозначается *InfA* (от латинского *infinum* – наименьший).

Пример: Определите, является ли множество $A = \left\{ \frac{1}{2}; \frac{2}{3}; \frac{3}{4}; \frac{4}{5}; \frac{5}{6}; \dots; \frac{n}{n+1}; \dots \right\}$ ограниченным. Если является, установите, какие

числа являются его гранями. Найдите точные верхнюю и нижнюю грани этого множества.

Решение. При любом натуральном n выполняется неравенство $\frac{1}{2} \le \frac{n}{n+1} \le 1$, поэтому данное множество A ограничено. В качестве верхней грани может быть значение 2 или 3 и т.д., однако наименьшей из всех верхних граней является значение 1, то есть SupA = 1. В качестве нижней грани может быть значение 0,-1 и т.д., однако наибольшей их всех нижних граней является значение $\frac{1}{2}$, то есть $InfA = \frac{1}{2}$.

Следует отметить, что множество, ограниченное снизу, имеет бесчисленное множество нижних граней, однако точная нижняя грань — одна (множество, ограниченное сверху, имеет бесчисленное множество верхних граней, однако точная верхняя грань — одна). Точная нижняя грань (точная верхняя грань) может как принадлежать множеству, так и не принадлежать ему. Так, в предыдущем примере, $InfA = \frac{1}{2} \in A$, а $SupA = 1 \notin A$.

1.2 Числовая последовательность. Основные понятия

Последовательность, как и множество, также является одним из ключевых понятий математики.

Определение 1.2.1. Если каждому числу n из множества натуральных чисел поставлено в соответствие действительное число a_n , то множество таких действительных чисел называется числовой последовательностью.

Обозначение: $\{a_n\}$. Другими словами, последовательность – упорядоченное множество действительных чисел.

Последовательность считается заданной, если указан закон, по которому каждому натуральному числу ставится в соответствие действительное число a_n . Наиболее простой способ задания последовательности — аналитический, то есть её задание с помощью формулы общего члена.

Например:
$$\left\{a_n = \frac{n}{n+1}\right\} = \left\{\frac{1}{2}; \frac{2}{3}; \frac{3}{4}; \frac{4}{5}; \frac{5}{6}; \dots; \frac{n}{n+1}; \dots\right\}.$$

Другим важным способом задания последовательности является так называемый *рекуррентный* (от латинского слова рекурсия – возврат) способ, при котором задается выражение, связывающее *n*-ый член последовательности с одним или несколькими предыдущими. Вычисляя новый, очередной член последовательности, мы как бы возвращается назад, к уже вычисленным, предыдущим членам.

Например: Дано рекуррентное соотношение $a_n = a_{n-1} + 2$ вместе с условием $a_1 = 1$. Найдем несколько первых членов последовательности.

$$a_2 = a_1 + 2 \rightarrow a_2 = 1 + 2 = 3;$$

 $a_3 = a_2 + 2 \rightarrow a_3 = 3 + 2 = 5;$
 $a_4 = a_3 + 2 \rightarrow a_4 = 5 + 2 = 7;...$

Таким образом, заданная последовательность будет иметь вид:

 $\{a_n\}$ = $\{1;3;5;7;....\}$, то есть получили последовательность нечетных чисел.

Последовательность может быть задана словесным описанием, в котором определяется процесс построения членов последовательности.

Например: « a_n — это n-oe простое число». Данная последовательность задается следующими членами: $\{a_n\}$ = $\{2;3;5;7;11;13;....\}$; значения членов берутся из таблицы простых чисел.

Элементы числовой последовательности можно изображать графически точками числовой прямой.

Действия над последовательностями

1. Умножение последовательности на число.

Рассмотрим последовательность $\{a_n\} = \{a_1; a_2; a_3; a_4; a_5;; a_n; ...\}$ и число c. Тогда произведением последовательности на число называется последовательность вида:

$$c \cdot \{a_n\} = \{c \cdot a_n\} = \{ca_1; ca_2; ca_3; ca_4; ca_5; \dots; ca_n; \dots\}$$

2. Сложение и вычитание последовательностей.

Рассмотрим две последовательности $\{a_n\}$ и $\{b_n\}$. Суммой $\{a_n\}$ и $\{b_n\}$ называется последовательность вида:

$${a_n} + {b_n} = {a_1 + b_1; a_2 + b_2; a_3 + b_3; a_4 + b_4; a_5 + b_5; \dots; a_n + b_n; \dots}$$

Разностью $\{a_n\}$ и $\{b_n\}$ называется последовательность вида:

$${a_n} - {b_n} = {a_n - b_n} = {a_1 - b_1; a_2 - b_2; a_3 - b_3; a_4 - b_4; a_5 - b_5; \dots; a_n - b_n; \dots}$$

3. Умножение и деление последовательностей.

Рассмотрим две последовательности $\{a_n\}$ и $\{b_n\}$. Произведением последовательностей $\{a_n\}$ и $\{b_n\}$ называется последовательность вида:

$$\{a_n\}\cdot\{b_n\}=\{a_n\cdot b_n\}=\{a_1\cdot b_1;a_2\cdot b_2;a_3\cdot b_3;a_4\cdot b_4;a_5\cdot b_5;...;a_n\cdot b_n;...\}$$

Частным двух последовательностей $\{a_n\}$ и $\{b_n\}$ называется последовательность вида (если все члены последовательности $\{b_n\}$ отличны от нуля):

$$\{a_n\} \div \{b_n\} = \left\{\frac{a_n}{b_n}\right\} = \{a_1/b_1; a_1/b_2; a_3/b_3; a_4/b_4; a_5/b_5; \dots; a_n/b_n; \dots\}.$$

1.3 Свойства числовых последовательностей

Определение 1.3.1. Последовательность $\{a_n\}$ называется *ограниченной сверху* (*снизу*), если существует число M (m) такое, что любой элемент последовательности удовлетворяет неравенству $a_n \leq M$ ($a_n \geq m$).

Пример: $\{a_n = \ln n\} = \{\ln 1; \ln 2; \ln 3; \ln 4; ...\}$ — является ограниченной снизу, так как можно указать такое число m, что все элементы последовательности располагаются правее этого числа, например m = 0.

Определение 1.3.1. Последовательность $\{a_n\}$ называется *ограниченной*, если она ограничена и сверху и снизу, то есть для неё найдутся такие значения m и M, что любой элемент последовательности удовлетворяет неравенству $m \le a_n \le M$.

Геометрически это означает, что все элементы ограниченной последовательности находятся на сегменте конечной длины с концами m и M.

Пример:
$$\left\{a_n = \frac{n}{n+1}\right\} = \left\{\frac{1}{2}; \frac{2}{3}; \frac{3}{4}; \frac{4}{5}; \dots\right\}$$
 – является ограниченной последова-

тельностью, так как все её элементы можно разместить на сегменте конечной длины, например [0;1].

Определение 1.3.2. Последовательность $\{a_n\}$ называется *неограниченной*, если для любого положительного числа k, найдется элемент последовательности a_n , для которого выполняется неравенство $|a_n| > k$.

Геометрически это означает, что для любого сегмента конечной длины [-k;k] существуют элементы a_n данной последовательности, расположенные за пределами этого сегмента; то есть элементы неограниченной последовательности невозможно поместить на сегмент конечной длины.

Пример: $\{a_n = (-1)^{n+1} \cdot n\} = \{1; -2; 3; -4; 5; -6; 7; ...\}$ — является неограниченной последовательностью.

Определение 1.3.3. Последовательность $\{a_n\}$ называется возрастающей, если каждый последующий член последовательности больше предыдущего, то есть $\forall_{n \in N}$ справедливо неравенство $a_{n+1} > a_n$.

Пример: $\left\{a_n = \frac{n}{2n+1}\right\} = \left\{\frac{1}{3}; \frac{2}{5}; \frac{3}{7}; \frac{4}{9}; \dots\right\}$ – является монотонно возрастающей последовательностью.

Определение 1.3.4. Последовательность $\{a_n\}$ называется убывающей, если каждый последующий член последовательности меньше предыдущего, то есть $\forall_{n \in N}$ справедливо неравенство $a_{n+1} < a_n$.

Пример: $\left\{a_n = \frac{n}{5^n}\right\} = \left\{\frac{1}{5}; \frac{2}{25}; \frac{3}{125}; \frac{4}{625}; \dots\right\}$ – является монотонно убывающей последовательностью.

Определение 1.3.5. Последовательность $\{a_n\}$ называется *неубывающей*, если каждый последующий член последовательности больше или равен предыдущему члену последовательности, то есть $\forall_{n \in N}$ справедливо неравенство $a_{n+1} \geq a_n$.

Определение 1.3.6. Последовательность $\{a_n\}$ называется *невозрастающей*, если каждый последующий член последовательности меньше или равен предыдущему члену последовательности, то есть $\forall_{n \in N}$ справедливо неравенство $a_{n+1} \leq a_n$.

Невозрастающие, неубывающие, возрастающие, убывающие последовательности называются *монотонными* последовательностями, возрастающие и убывающие называются *строго монотонными* последовательностями.

1.4 Предел последовательности

В этом параграфе мы рассмотрим одно из основных понятий математического анализа – понятие предела числовой последовательности.

Рассмотрим примеры некоторых числовых последовательностей.

IIpumep 1.4.1.
$$x_n = \frac{1}{n}; \{x_n\} = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots\}$$
.

Изобразим элементы этой последовательности графически (рисунок 1.4.1).

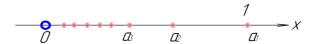


Рисунок 1.4.1 — Графическое изображение элементов последовательности $x_{_{n}} = \frac{1}{n}$

График состоит из отдельных точек, расположенных на числовой прямой. Из графика видно, что элементы этой последовательности с возрастанием номера становятся близкими к нулю или говорят, что элементы x_n стремятся к нулю. Символически эту фразу можно записать следующим образом $x_n \to 0$ при $n \to \infty$.

Пример 1.4.2.
$$b_n = \frac{n}{n+1}; \{b_n\} = \left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \dots\right\}.$$

Отметим элементы последовательности на числовой прямой (рисунок 1.4.2).

$$\frac{0.5}{0.000} \times X$$

Рисунок 1.4.2 – Графическое изображение элементов последовательности $b_n = \frac{n}{n+1}$

Очевидно, что с возрастанием номера, элементы данной последовательности стремятся к единице, то есть $b_n \to 1$ при $n \to \infty$.

Пример 1.4.3.
$$y_n = (-1)^n \frac{1}{n}$$
; $\{y_n\} = \{-1, \frac{1}{2}, -\frac{1}{3}, \frac{1}{4}, -\frac{1}{5}, \dots\}$.

Нанесем элементы последовательности на числовую прямую (рисунок 1.4.3).

Рисунок 1.4.3 — Графическое изображение элементов последовательности $y_n = (-1)^n \frac{1}{n}$

График последовательности свидетельствует нам о том, что с возрастанием порядкового номера, её элементы стремятся к нулю, то есть $y_n \to 0$ при $n \to \infty$.

Из приведенных примеров видно, что с возрастанием номера элементы этих последовательностей стремятся к некоторому числу, то есть имеют конечный предел.

Определение 1.4.1 Число a называется пределом числовой последовательности $\{a_n\}$, если для любого числа $\varepsilon>0$ существует такой номер, зависящий от ε , $N=N(\varepsilon)$, что для всех элементов числовой последовательности с номерами n>N выполняется неравенство $|a_n-a|<\varepsilon$.

Символически предел числовой последовательности обозначают следующим образом:

$$\lim_{n\to\infty}a_n=a.$$

Из сформулированного определения следует его геометрический смысл:

Если числовая последовательность $\{a_n\}$ имеет пределом число a, то это означает, что для любого, выбранного нами положительного числа ε , можно указать номер элемента последовательности n=N+1, начиная с которого, бесчисленное множество элементов последовательности $\{a_{N+!},a_{N+2},a_{N+3},...\}$ находятся в интервале $(a-\varepsilon;a+\varepsilon)$, а также можно указать конечное число элементов $\{a_1,a_2,a_3,...,a_N\}$, которые останутся за пределами указанного интервала.

Определение 1.4.2 Интервал $(a-\varepsilon,a+\varepsilon)$ называется ε — окрестностью точки a .

Характер стремления элементов числовой последовательности к своему пределу может быть различным. Так, например, последовательность $\{x_n\}$, рассмотренная в примере 1.4.1, стремится к нулю, убывая. Последовательность $\{b_n\}$, которую мы рассмотрели в примере 1.4.2, стремится к своему пределу, к единице, возрастая. Числовая последовательность $\{y_n\}$, с которой мы встретились в примере 1.4.3, стремится к нулю таким образом, что её элементы становятся поочередно то больше нуля, то меньше нуля.

Докажем, что предел последовательности $x_n = \frac{1}{n}$ равен нулю, то есть $\lim_{n \to \infty} \frac{1}{n} = 0$.

Для доказательства выберем произвольное положительное число ε . Тогда по определению предела числовой последовательности 1.4.1

$$|a_n - a| < \varepsilon$$
, то есть $\left| \frac{1}{n} - 0 \right| < \varepsilon$ или $\frac{1}{n} < \varepsilon$

Найдем номер элемента $n > \frac{1}{\varepsilon}$.

Из последнего неравенства следует, что можно указать номер N, равный целой части числа $\frac{1}{\varepsilon}$, то есть $N=\left[\frac{1}{\varepsilon}\right]$. Таким образом, элементы числовой последовательности с номерами $n>\left[\frac{1}{\varepsilon}\right]$ попадут в ε — окрестность числа a=0.

Итак, мы доказали, что $\lim_{n\to\infty}\frac{1}{n}=0$.

Аналогично можно доказать, что $\lim_{n\to\infty}\frac{n}{n+1}=1$, a $\lim_{n\to\infty}(-1)^n\frac{1}{n}=0$.

Предлагаем Вам сделать это самостоятельно.

Определение 1.4.3. Числовая последовательность, имеющая конечный предел, называется сходящейся; не имеющая конечного предела – расходящейся.

Отметим важные свойства сходящихся последовательностей:

1. Последовательность, имеющая предел, ограничена.

- 2. Последовательность может иметь только один предел.
- 3. Любая неубывающая (невозрастающая) и ограниченная сверху (снизу) числовая последовательность имеет предел.
- 4. Всякая постоянная последовательность, элементы которой равны числу a, сходится к этому числу, то есть $\lim_{n \to \infty} a = a$.

Сформулируем также теоремы о пределах, которые будут помогать нам при вычислении пределов числовых последовательностей.

Теорема 1.4.1. Алгебраическая сумма сходящихся числовых последовательностей $\{x_n\}$ и $\{y_n\}$ есть сходящаяся последовательность $\{x_n+y_n\}$, предел которой равен алгебраической сумме пределов этих последовательностей, то есть

$$\lim_{n\to\infty} (x_n + y_n) = \lim_{n\to\infty} x_n + \lim_{n\to\infty} y_n.$$

Теорема 1.4.2. Произведение сходящихся числовых последовательностей $\{x_n\}$ и $\{y_n\}$ есть сходящаяся последовательность $\{x_ny_n\}$, предел которой равен произведению пределов этих последовательностей, то есть

$$\lim_{n\to\infty} (x_n y_n) = \lim_{n\to\infty} x_n \cdot \lim_{n\leftarrow\infty} y_n.$$

Следствие. Постоянный множитель можно выносить за знак предела, то есть

$$\lim_{n\to\infty} Cx_n = C \lim_{n\to\infty} x_n$$
, где $C = const$.

Теорема 1.4.3. Частное сходящихся числовых последовательностей $\{x_n\}$ и $\{y_n\}$ есть сходящаяся последовательность $\left\{\frac{x_n}{y_n}\right\}$, предел которой равен частному пределов этих последовательностей, при условии, что $\lim_{n\to\infty}y_n\neq 0$, то есть

$$\lim_{n\to\infty}\frac{x_n}{y_n}=\frac{\lim_{n\to\infty}x_n}{\lim_{n\to\infty}y_n}.$$

Рассмотрим предельный переход в неравенствах.

Теорема 1.4.4. Если элементы сходящейся последовательности $\{x_n\}$, начиная с некоторого номера удовлетворяют неравенству $x_n \ge b$ $(x_n \le b)$, то и предел этой последовательности также удовлетворяет неравенству $\lim_{n\to\infty} x_n \ge b$

$$\left(\lim_{n\to\infty}x_n\leq b\right).$$

Следствие 1.4.4.-1. Если элементы сходящихся последовательностей $\{x_n\}$ и $\{y_n\}$, начиная с некоторого номера, удовлетворяют неравенству $x_n \leq y_n$, то и их пределы также удовлетворяют неравенству $\lim_{n \to \infty} x_n \leq \lim_{n \to \infty} y_n$.

Спедствие 1.4.4.-2. Если все элементы сходящейся последовательности $\{x_n\}$ сходятся на отрезке [a,b], то и её предел также находится на этом отрезке.

Теорема 1.4.5. Пусть соответствующие элементы трёх сходящихся последовательностей $\{x_n\},\ \{y_n\},\ \{z_n\}$ удовлетворяют неравенству $x_n \leq y_n \leq z_n$ для всех $n \in N$, причем $\lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n = a$. Тогда последовательность $\{y_n\}$ также сходится к этому пределу, то есть $\lim_{n \to \infty} y_n = a$.

1.5 Бесконечно большие и бесконечно малые числовые последовательности, их свойства

При рассмотрении числовых последовательностей, особую роль играют, так называемые, бесконечно малые и бесконечно большие числовые последовательности. Рассмотрим эти понятия.

Определение 1.5.1. Числовая последовательность $\{\alpha_n\}$ называется бесконечно малой, если для любого положительного числа ε существует номер элемента N такой, что для всех элементов числовой последовательности с номерами n>N выполняется неравенство $|\alpha_n|<\varepsilon$.

Из определения бесконечно малой числовой последовательности следует, что её предел равен нулю при $n \to \infty$, то есть $\lim_{n \to \infty} \alpha_n = 0$.

Из рассмотренных ранее в пункте 1.4 примеров следует, что числовые последовательности $x_n = \frac{1}{n}$ и $y_n = (-1)^n \frac{1}{n}$ являются бесконечно малыми, так как $\lim_{n \to \infty} \frac{1}{n} = 0$ и $\lim_{n \to \infty} (-1)^n \frac{1}{n} = 0$.

Отметим некоторые свойства бесконечно малых последовательностей.

Теорема 1.5.1. Алгебраическая сумма двух бесконечно малых числовых последовательностей есть последовательность бесконечно малая.

Эта теорема означает, что если $\{\alpha_n\}$ и $\{\beta_n\}$ – бесконечно малые последовательности, то последовательность $\{\alpha_n \pm \beta_n\}$ также является бесконечно малой.

Символически это можно записать следующим образом $0 \pm 0 = 0$.

Замечание. Эта теорема справедлива для любого конечного числа бесконечно малых последовательностей.

Теорема 1.5.2. Произведение двух бесконечно малых числовых последовательность бесконечно малая.

Из теоремы следует, что если $\{\alpha_n\}$ и $\{\beta_n\}$ – бесконечно малые последовательности, то последовательность $\{\alpha_n\cdot\beta_n\}$ - бесконечно малая.

Символически эта теорема выглядит так: $0 \cdot 0 = 0$.

Замечание. Произведение любого конечного числа бесконечно малых числовых последовательностей есть последовательность бесконечно малая.

Теорема 1.5.3. Произведение бесконечно малой числовой последовательности на ограниченную последовательность есть последовательность бесконечно малая.

Таким образом, если последовательность $\{\alpha_n\}$ – бесконечно малая, а последовательность $\{b_n\}$ – ограниченная, то числовая последовательность $\{\alpha_n \cdot b_n\}$ является бесконечно малой.

Замечание. Очевидно, что произведение бесконечно малой последовательности на постоянное число является последовательностью бесконечно малой, то есть если последовательность $\{\alpha_n\}$ – бесконечно малая, C – некоторое число, то последовательность $\{C\alpha_n\}$ является бесконечно малой.

Наряду с бесконечно малыми числовыми последовательностями существуют и бесконечно большие последовательности.

Определение 1.5.2. Последовательность $\{x_n\}$ называется бесконечно большой, если для любого положительного числа A существует номер N такой, что для всех элементов этой последовательности с номерами n>N выполняется неравенство $|x_n|>A$.

Это означает, что если число A является пределом последовательности $\{x_n\}$, то все элементы последовательности с номерами больше числа N, то есть $\{x_{N+1}, x_{N+2}, ...\}$ будут находиться $x_n \in (-\infty; -A) \cup (A; +\infty)$.

Очевидно, что если числовая последовательность $\{x_n\}$ является бесконечно большой, то $\lim_{n\to\infty} x_n = -\infty$, или $\lim_{n\to\infty} x_n = +\infty$, или $\lim_{n\to\infty} x_n = \infty$.

Например, числовая последовательность $\{x_n\} = \{2n\} = \{2,4,6,..\}$ является бесконечно большой, так как с возрастанием номера элементы этой последовательности стремятся к плюс бесконечности, то есть $\lim_{n \to \infty} x_n = +\infty$.

Очевидно, что числовая последовательность $\{x_n\} = \{-2n\} = \{-2,-4,-6,..\}$ также является бесконечно большой, так как $\lim_{n\to\infty} x_n = -\infty$.

Причем, если рассмотреть числовую последовательность $\{x_n\} = \{(-1)^n 2n\} = \{-2,4,-6,..\}$, то совершенно очевидно, что элементы этой последовательности при $n \to \infty$ стремятся к бесконечности, то есть $\lim_{n \to \infty} x_n = \infty$.

Таким образом, все рассмотренные выше числовые последовательности являются бесконечно большими.

Отметим некоторые свойства бесконечно больших последовательностей.

Теорема 1.5.4. Сумма двух бесконечно больших числовых последовательность бесконечно большая.

Формулировка теоремы означает, что если $\{x_n\}$ и $\{y_n\}$ бесконечно большие последовательности, то числовая последовательность $\{x_n+y_n\}$ также является бесконечно большой. Символически эту теорему можно записать следующим образом: если $\lim_{n\to\infty} x_n = \infty$ и $\lim_{n\to\infty} y_n = \infty$, то $\lim_{n\to\infty} (x_n+y_n) = \infty$, то есть $\infty + \infty = \infty$.

Теорема 1.5.5. Произведение двух бесконечно больших числовых последовательностей есть последовательность бесконечно большая.

Из теоремы вытекает, что если $\{x_n\}$ и $\{y_n\}$ бесконечно большие последовательности, то числовая последовательность $\{x_n\cdot y_n\}$ также является бесконечно большой. Символически эту теорему можно записать следующим образом: если $\lim_{n\to\infty} x_n = \infty$ и $\lim_{n\to\infty} y_n = \infty$, то $\lim_{n\to\infty} (x_n\cdot y_n) = \infty$, то есть $\infty\cdot\infty=\infty$.

Замечание. Теоремы 1.5.4 (1.5.5) справедливы для любого конечного числа слагаемых (сомножителей).

Теорема 1.5.6. Если $\{x_n\}$ — бесконечно большая последовательность и все её члены отличны от нуля, то последовательность $\left\{\frac{1}{x_n}\right\}$ бесконечно малая,

и. наоборот, если последовательность $\{\alpha_n\}$ — бесконечно малая $\alpha_n \neq 0$, то последовательность $\left\{\frac{1}{\alpha_n}\right\}$ — бесконечно большая.

Символически это можно записать следующим образом:

$$\frac{1}{\infty} = 0 \qquad \qquad u \qquad \qquad \frac{1}{0} = \infty .$$

1.6 Второй замечательный предел. Число е

Рассмотрим последовательность $\{x_n\}$ с общим членом $x_n = \left(1 + \frac{1}{n}\right)^n$. Найдем несколько первых элементов этой последовательности

$${x_n} = {2; \frac{9}{4}; \frac{64}{27}; \dots}.$$

Можно доказать, что эта последовательность будет возрастающей $x_{n+1} > x_n$ и ограниченной сверху $x_n < 3$, а следовательно сходящейся, то есть она имеет предел. Причем $2 \le \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n < 3$. Было доказано, что пределом этой последовательности является иррациональное число, которое обозначают буквой e. Его приближенное значение с точностью до 10^{-6} составляет $e \approx 2,718282$.

Итак,

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e.$$

Этот предел называется вторым замечательным пределом. С помощью этого предела устраняют математическую неопределенность вида 1^{∞} .

Число e играет большую роль в математике. В частности оно является основанием показательной функции $y=e^x$, основанием натурального логарифма $\ln x = \log_e x$.

1.7 Числовые последовательности и их пределы в задачах

Пример 1.7.1. Напишите первые четыре члена последовательности $\{a_n\}$, если:

1)
$$a_n = \frac{n+1}{n^2}$$
; 2) $a_n = 2^{n+1}$; 3) $a_n = \frac{(-1)^n}{n}$; 4) $a_n = \sin \frac{\pi n}{2}$.

Решение. 1) Для отыскания первого члена последовательности с общим членом $a_n = \frac{n+1}{n^2}$ необходимо вместо n в формуле общего члена поставить значение 1:

$$a_1 = \frac{1+1}{1^2} = \frac{2}{1} = 2$$
.

Для отыскания второго члена последовательности в формулу вместо n необходимо подставить значение 2:

$$a_2 = \frac{2+1}{2^2} = \frac{3}{4}$$
.

Аналогичным образом найдем третий и четвертый члены последовательности:

$$a_3 = \frac{3+1}{3^2} = \frac{4}{9}$$
;

$$a_4 = \frac{4+1}{4^2} = \frac{5}{16}$$
.

2) Рассмотрим последовательность с общим членом $a_n = 2^{n+1}$. Определим первые четыре члена последовательности. Для этого в общий член последовательности вместо n подставим числовые значения 1,2,3 и 4 соответственно:

$$a_1 = 2^{1+1} = 2^2 = 4;$$

 $a_2 = 2^{2+1} = 2^3 = 8;$
 $a_3 = 2^{3+1} = 2^4 = 16;$
 $a_4 = 2^{4+1} = 2^5 = 32.$

3) Для отыскания первого члена последовательности с общим членом $a_n = \frac{(-1)^n}{n}$ подставим вместо n значение 1:

$$a_1 = \frac{(-1)^1}{1} = \frac{-1}{1} = -1$$
.

Для отыскания второго члена последовательности подставим вместо n значение 2:

$$a_2 = \frac{(-1)^2}{2} = \frac{1}{2}$$
.

Аналогично определим третий и четвертый члены последовательности:

$$a_3 = \frac{(-1)^3}{3} = \frac{-1}{3}; \quad a_4 = \frac{(-1)^4}{4} = \frac{1}{4}.$$

4) Определим первые четыре члена последовательности $a_n = \sin \frac{\pi n}{2}$.

$$a_1 = \sin\frac{1\cdot\pi}{2} = \sin\frac{\pi}{2} = 1;$$
 $a_2 = \sin\frac{2\cdot\pi}{2} = \sin\pi = 0;$ $a_3 = \sin\frac{3\cdot\pi}{2} = \sin\frac{3\pi}{2} = -1;$ $a_4 = \sin\frac{4\cdot\pi}{2} = \sin2\pi = 0.$

<u>Пример 1.7.2.</u> Напишите первые три члена последовательности, если: 1) $a_n = a_{n-1} + 2$, и $a_1 = 1$; 2) $a_n = -n \cdot a_{n-1}$, и $a_1 = 1$.

Решение. 1) Для первого случая известно, что $a_1 = 1$. Найдем по предложенной формуле $a_n = a_{n-1} + 2$ значение второго члена последовательности:

$$a_2 = a_1 + 2 = 1 + 2 = 3$$
.

Третий член последовательности определим опять опираясь на формулу $a_n = a_{n-1} + 2$, учитывая, что $a_2 = 3$:

$$a_3 = a_2 + 2 = 3 + 2 = 5$$
.

2) Определим второй член последовательности, используя равенства $a_n = -n \cdot a_{n-1}$ и $a_1 = 1$:

$$a_2 = -2 \cdot a_1 = -2 \cdot 1 = -2$$
.

Третий член последовательности определится аналогичным образом:

$$a_3 = -3 \cdot a_2 = -3 \cdot (-2) = 6$$
.

<u>Пример 1.7.3.</u> Зная несколько первых членов последовательности $\{a_n\}$, напишите формулу её общего члена: 1) 1, $\frac{1}{3}$, $\frac{1}{5}$, $\frac{1}{7}$...; 2) 1, $\frac{1}{4}$, $\frac{1}{9}$, $\frac{1}{16}$, $\frac{1}{25}$,...; 3) -1,2,-3,4,-5, ...

Решение. 1) Рассмотрим последовательность 1, $\frac{1}{3}$, $\frac{1}{5}$, $\frac{1}{7}$...; и проанализируем её. Первый член последовательности можно представить в виде $1 = \frac{1}{1}$,

тогда числитель каждого члена последовательности равен единице. Рассмотрим знаменатели членов последовательности: 1,3,5,7 ...— представляют собой арифметическую прогрессию с первым членом равным единице, и знаменателем, равным двум. Любой член арифметической прогрессии можно отыскать по формуле: $a_n = a_1 + d \cdot (n-1)$. Для нашей прогрессии $a_1 = 1$, d = 2, тогда $a_n = a_1 + d \cdot (n-1) = 1 + 2 \cdot (n-1) = 1 + 2n - 2 = 2n - 1$.

Тогда общий член последовательности можно записать в виде: $\left\{a_n=\frac{1}{2n-1}\right\}=\left\{1,\frac{1}{3},\frac{1}{5},\frac{1}{7},\ldots\right\}.$

- 2) Определим общий член последовательности 1, $\frac{1}{4}$, $\frac{1}{9}$, $\frac{1}{16}$, $\frac{1}{25}$,... Первый член последовательности можно представить в виде $1=\frac{1}{1}$, тогда числитель каждого члена последовательности равен единице. Рассмотрим знаменатели членов последовательности: 1, 4, 9, 16, 25... эти значения представляют собой квадраты натуральных чисел 1, 2, 3, 4, 5 ... Общий член последовательности можно записать в виде: $\left\{a_n = \frac{1}{n^2}\right\} = \left\{1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, ...\right\}$
- 3) Рассмотрим последовательность -1,2,-3,4,-5, Отметим, что члены этой последовательности чередуются по знаку, поэтому общий член последовательности будет содержать множитель $(-1)^n$. Общий член последовательности можно записать в виде: $\{a_n = (-1)^n \cdot n\} = \{-1,2,-3,4,...\}$

<u>Пример 1.7.4.</u> Найдите последовательности $\{a_n \pm b_n\}$, $\{a_n \cdot b_n\}$, $\{a_n \cdot b_n\}$, eсли $a_n = (-1)^n$, a $b_n = (-2)^n$.

Решение. Членами последовательности $a_n = (-1)^n$ будут являться значения $a_n = (-1)^n = \{-1;1;-1;1;-1...\};$ членами последовательности $b_n = (-2)^n = \{-2;4;-8;16;-32...\}$. Рассмотрим последовательность вида $\{a_n+b_n\}$: $\{a_n+b_n\}=\{a_n\}+\{b_n\}=\{a_1+b_1;a_2+b_2;a_3+b_3;a_4+b_4;a_5+b_5;....;a_n+b_n;...\}$ = $=\{-1+(-2);1+4;-1+(-8);1+16;-1+(-32)...\}=\{-3;5;-9;17;-33...\}$.

23

Определим вид последовательности $\{a_n - b_n\}$:

$$\{a_n - b_n\} =$$

$$\{a_n\} - \{b_n\} = \{a_1 - b_1; a_2 - b_2; a_3 - b_3; a_4 - b_4; a_5 - b_5; \dots; a_n - b_n; \dots\} =$$

$$= \{-1 - (-2); 1 - 4; -1 - (-8); 1 - 16; -1 - (-32) \dots\} = \{1; -3; 7; -15; 31 \dots\}.$$

Определим последовательность вида: $\{a_n \cdot b_n\}$:

$$\{a_n \cdot b_n\} = \{a_n\} \cdot \{b_n\} = \{a_1 \cdot b_1; a_2 \cdot b_2; a_3 \cdot b_3; a_4 \cdot b_4; a_5 \cdot b_5; \dots; a_n \cdot b_n; \dots\} = \{-1 \cdot (-2); 1 \cdot 4; -1 \cdot (-8); 1 \cdot 16; -1 \cdot (-32) \dots\} = \{2; 4; 8; 16; 32 \dots\}.$$

Определим последовательность вида: $\left\{\frac{a_n}{b_n}\right\}$.

$$\left\{ \frac{a_n}{b_n} \right\} = \left\{ a_n \right\} \div \left\{ b_n \right\} = \left\{ a_1/b_1; a_1/b_2; a_3/b_3; a_4/b_4; a_5/b_5; \dots; a_n/b_n; \dots \right\} =$$

$$= \left\{ \frac{-1}{-2}; \frac{1}{4}; \frac{-1}{-8}; \frac{1}{16}; \frac{-1}{-32}; \dots \right\} = \left\{ \frac{1}{2}; \frac{1}{4}; \frac{1}{8}; \frac{1}{16}; \frac{1}{32}; \dots \right\}.$$

<u>Пример 1.7.5</u>. Найдите предел последовательности $\lim_{n\to\infty} \frac{2}{3n^2+5}$.

Решение. Воспользуемся теоремами 1.4.3 и 1.4.1

$$\lim_{n \to \infty} \frac{2}{3n^2 + 5} = \frac{\lim_{n \to \infty} 2}{\lim_{n \to \infty} 3n^2 + \lim_{n \to \infty} 5} = \frac{2}{\infty + 5} = \frac{2}{\infty} = 0.$$

<u>Пример 1.7.6.</u> Найдите предел последовательности $\lim_{n\to\infty} \frac{2n^2+n-7}{3n^2+5}$.

Решение. Воспользуемся теоремами 1.4.3 и 1.4.1

$$\lim_{n \to \infty} \frac{2n^2 + n - 7}{3n^2 + 5} = \frac{\lim_{n \to \infty} 2n^2 + \lim_{n \to \infty} n - \lim_{n \to \infty} 7}{\lim_{n \to \infty} 3n^2 + \lim_{n \to \infty} 5} = \frac{\infty}{\infty + 5} = \frac{\infty}{\infty}.$$

Говорят, что в этом случае мы имеем неопределенность вида $\left[\frac{\infty}{\infty}\right]$. Чтобы вычислить предел необходимо устранить неопределенность. Для её устранения нужно числитель и знаменатель дроби $\frac{2n^2+n-7}{3n^2+5}$ почленно разделить на старшую степень n, то есть на n^2 . Получим

$$\lim_{n\to\infty} \frac{2n^2 + n - 7}{3n^2 + 5} = \lim_{n\to\infty} \frac{2 + \frac{1}{n} - \frac{7}{n^2}}{3 + \frac{5}{n^2}} = \frac{2 + \frac{1}{\infty} - \frac{7}{\infty}}{3 + \frac{5}{\infty}} = \left[m.\kappa. \frac{1}{\infty} = 0 \right] = \frac{2 + 0 - 0}{3 + 0} = \frac{2}{3}.$$

<u>Пример 1.7.7</u>. Найдите предел последовательности $\lim_{n\to\infty} \frac{2n^2 + 3n - 1}{4n^3 + 7}$.

Решение. Воспользуемся теоремами 1.4.3 и 1.4.1

$$\lim_{n\to\infty} \frac{2n^2 + 3n - 1}{4n^3 + 7} = \begin{bmatrix} \infty \\ \infty \end{bmatrix} = \begin{bmatrix} nodeлим & noчленно \\ na & n^3 \end{bmatrix} = \lim_{n\to\infty} \frac{\frac{2}{n} + \frac{3}{n^2} - \frac{1}{n^3}}{4 + \frac{7}{n^3}} = \frac{0 + 0 - 0}{4 + 0} = \frac{0}{4} = 0.$$

Пример 1.7.8. Найдите предел последовательности $\lim_{n\to\infty} \frac{3n^2 + 5n - 2}{n - 4}$.

Решение. Воспользуемся теоремами 1.4.3 и 1.4.1:

$$\lim_{n \to \infty} \frac{3n^2 + 5n - 2}{n - 4} = \left[\frac{\infty}{\infty}\right] = \begin{bmatrix} nodeлим & noчленно \\ нa & n^2 \end{bmatrix} = \lim_{n \to \infty} \frac{3 + \frac{5}{n} - \frac{2}{n^2}}{\frac{1}{n} - \frac{4}{n^2}} = \frac{3 + 0 - 0}{0 + 0} = \frac{3}{0} = \infty$$

<u>Пример 1.7.9.</u> Найдите предел последовательности $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+3}$.

Решение. При $n \to \infty$ последовательность $\left(1 + \frac{1}{n}\right)^{n+3} \to 1^{\infty}$, то есть к математической неопределенности вида $\left|1^{\infty}\right|$,

Воспользуемся формулой второго замечательного предела $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e \ \text{и представим наш предел в виде}$

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+3} = \lim_{n\to\infty} \left(\left(1+\frac{1}{n}\right)^n \left(1+\frac{1}{n}\right)^3\right) =$$

$$\begin{bmatrix} воспользуемся & meopeмой \\ npedene & npouseedehus \end{bmatrix} = = \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n \cdot \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^3 = e \cdot 1^3 = e \cdot 1$$

<u>Пример 1.7.10.</u> Найдите предел последовательности $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{3n}$.

Решение: При $n \to \infty$ последовательность $\left(1 + \frac{1}{n}\right)^{3n} \to 1^{\infty}$, то есть к математической неопределенности вида $\left[1^{\infty}\right]$, которая устраняется с помощью второго замечательного предела $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$.

Представим наш предел в виде $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{3n} = \lim_{n\to\infty} \left(\left(1+\frac{1}{n}\right)^n\right)^3 = e^3$.

<u>Пример 1.7.11.</u> Найдите предел последовательности $\lim_{n\to\infty} \left(1+\frac{2}{n}\right)^{6n}$.

Решение. При $n \to \infty$ последовательность $\left(1 + \frac{2}{n}\right)^{6n} \to 1^{\infty}$, то есть к математической неопределенности вида $\left[1^{\infty}\right]$, которую можно устранить с помощью второго замечательного предела. Воспользуемся этой формулой

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e.$$

Для этого представим наш предел в виде:

$$\lim_{n \to \infty} \left(1 + \frac{2}{n} \right)^{6n} = \lim_{n \to \infty} \left(\left(1 + \frac{2}{n} \right)^{\frac{n}{2}} \right)^{12} = e^{12}.$$

<u>Пример 1.7.12.</u> Найдите предел последовательности $\lim_{n\to\infty} \left(1 + \frac{3}{n+1}\right)^{5n}$.

Решение. При $n \to \infty$ последовательность $\left(1 + \frac{3}{n+1}\right)^{5n} \to 1^{\infty}$, то есть к математической неопределенности вида $\left[1^{\infty}\right]$. Для её устранения воспользуемся формулой второго замечательного предела $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$ и представим наш предел в виде:

$$\lim_{n \to \infty} \left(1 + \frac{3}{n+1} \right)^{5n} = \lim_{n \to \infty} \left(\left(1 + \frac{3}{n+1} \right)^{\frac{n+1}{3}} \right)^{\frac{3}{n+1} \cdot 5n} =$$

$$\begin{bmatrix} \text{следуя} & \text{формуле} & \text{второго} \\ \text{замечательного} & \text{предела} \end{bmatrix} = e^{\frac{15n}{n+1}}.$$

Найдем предел $\lim_{n\to\infty}\frac{15n}{n+1}$:

$$\lim_{n\to\infty} \frac{15n}{n+1} = \begin{bmatrix} \infty \\ \infty \end{bmatrix} = \begin{bmatrix} nodeлим & nounehol \\ na & n \end{bmatrix} = \lim_{n\to\infty} \frac{15}{1+\frac{1}{n}} = 15.$$

Тогда искомый предел $\lim_{n\to\infty} \left(1+\frac{3}{n+1}\right)^{5n} = e^{15}$.

<u>Пример 1.7.13.</u> Найдите предел последовательности $\lim_{n\to\infty} \left(1 - \frac{4}{3n+2}\right)^{2n-7}$.

Решение. При $n \to \infty$ последовательность $\left(1 - \frac{4}{3n+2}\right)^{2n-7} \to 1^{\infty}$, то есть к математической неопределенности вида $\lfloor 1^{\infty} \rfloor$, устраним неопределенность с помощью второго замечательного предела.

Представим наш предел в виде

$$\lim_{n\to\infty} \left(1 - \frac{4}{3n+2}\right)^{2n-7} = \lim_{n\to\infty} \left(1 + \frac{-4}{3n+2}\right)^{\frac{3n+2}{-4}} \int_{3n+2}^{\frac{-4}{3n+2}(2n-7)} =$$

$$\begin{bmatrix} no & \phi o p \text{ муле} & \text{второго} \\ \text{замечательного} & n p e d e л a \end{bmatrix} = = e^{\frac{-4(2n-7)}{3n+2}}.$$

Найдем предел последовательности $\lim_{n\to\infty} \frac{-4(2n-7)}{3n+2}$

$$\lim_{n \to \infty} \frac{-4(2n-7)}{3n+2} = \lim_{n \to \infty} \frac{-8n+28}{3n+2} = \left[\frac{\infty}{\infty}\right] = \begin{bmatrix} nodелим & nouneho \\ n & n \end{bmatrix} = \lim_{n \to \infty} \frac{-8+\frac{28}{n}}{3+\frac{2}{n}} = \frac{1}{n}$$

$$=-\frac{8}{3}$$
.

Тогда искомый предел
$$\lim_{n\to\infty} \left(1-\frac{4}{3n+2}\right)^{2n-7} = e^{-\frac{8}{3}} = \frac{1}{\sqrt[3]{e^8}}$$
.

<u>Пример 1.7.14.</u> Найдите предел последовательности $\lim_{n\to\infty} \left(\frac{3n-5}{3n+7}\right)^{4n-1}$.

Решение. При $n \to \infty$ последовательность $\left(\frac{3n-5}{3n+7}\right)^{4n-1} \to 1^{\infty}$, то есть к математической неопределенности вида $\left[1^{\infty}\right]$. Как мы уже видели в предыдущих примерах этот вид неопределенности устраняется с помощью второго замечательного предела, то есть по формуле $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$. Представим заданный предел в виде

$$\lim_{n \to \infty} \left(\frac{3n-5}{3n+7} \right)^{4n-1} = \lim_{n \to \infty} \left(1 + \frac{3n-5}{3n+7} - 1 \right)^{4n-1} = \lim_{n \to \infty} \left(1 + \frac{3n-5-3n-7}{3n+7} \right)^{4n-1} =$$

$$= \lim_{n \to \infty} \left(1 + \frac{-12}{3n+7} \right)^{4n-1} = \lim_{n \to \infty} \left(\left(1 + \frac{-12}{3n+7} \right)^{\frac{3n+7}{-12}} \right)^{\frac{-12}{3n+7}(4n-1)} =$$

$$= \lim_{n \to \infty} \left(\left(1 + \frac{-12}{3n+7} \right)^{\frac{3n+7}{-12}} \right)^{\frac{-48n+12}{3n+7}} = e^{\frac{-48n+12}{3n+7}}.$$

Найдем предел последовательности $\lim_{n\to\infty} \frac{-48n+12}{3n+7}$.

$$\lim_{n \to \infty} \frac{-48n + 12}{3n + 7} = \left[\frac{\infty}{\infty}\right] = \begin{bmatrix} nodелим & noчленно \\ нa & n \end{bmatrix} = \lim_{n \to \infty} \frac{-48 + \frac{12}{n}}{3 + \frac{7}{n}} = -\frac{48}{3} = -16$$

Тогда
$$\lim_{n\to\infty} \left(\frac{3n-5}{3n+7}\right)^{4n-1} = e^{-16} = \frac{1}{e^{16}}.$$

Задачи для самостоятельного решения

Пример 1.7.15. Напишите первые пять членов последовательности

1)
$$a_n = \frac{2}{2n+3}$$
; 2) $a_n = \frac{n}{2^n+3}$; 3) $a_n = \frac{(-1)^n}{n^2+1}$

Пример 1.7.16. Зная несколько первых членов последовательности, напишите формулу общего члена последовательностей: 1) $\left\{1; \frac{1}{2^2}; \frac{1}{5^2}; \frac{1}{7^2}; \dots \right\};$

2)
$$\left\{1; 2\frac{1}{4}; 2\frac{7}{9}; 3\frac{1}{16}; 3\frac{6}{25}; \ldots\right\}; 3$$
 $\left\{2; -\frac{3}{4}; \frac{4}{9}; -\frac{5}{16}; \frac{6}{25}; \ldots\right\}.$

Пример 1.7.17. Напишите пять первых элементов последовательности, заданных их рекуррентными соотношениями: 1) $a_1 = 1$; $a_{n+1} = (n+2) \cdot a_n$; 2) $b_1 = 1$; $b_{n+1} = n \cdot 3^n \cdot b_n$.

Пример 1.7.18. Найдите пределы последовательностей:

1)
$$\lim_{n\to\infty} \frac{2n^2 + 3n - 4}{n^2 + 5}$$
;

2)
$$\lim_{n\to\infty} \frac{2n^2 + 2n - 4}{n^3 - 1}$$
; 3) $\lim_{n\to\infty} \frac{2n - 4}{n^2 + 5}$;

3)
$$\lim_{n \to \infty} \frac{2n-4}{n^2+5}$$
;

4)
$$\lim_{n\to\infty}\frac{n^2+n}{n+5\sqrt{n}};$$

5)
$$\lim_{n\to\infty} \frac{4n^3 + 2n - 1}{n^2 + \sqrt[3]{n}};$$
 6) $\lim_{n\to\infty} \frac{3n - 4}{2n^2 + 2};$

6)
$$\lim_{n\to\infty} \frac{3n-4}{2n^2+2}$$
;

7)
$$\lim_{n\to\infty} \frac{1.5n^2 - 3n + 8}{2n^2 + \sqrt[3]{n} + \sqrt{n}}$$

8)
$$\lim_{n \to \infty} \frac{\sqrt{4n^2 + 2n - 1}}{n - 4}$$
 9) $\lim_{n \to \infty} \frac{\sqrt{n^2 + 7n - 2}}{\sqrt{9n^2 - 2n + 4}}$

9)
$$\lim_{n\to\infty} \frac{\sqrt{n^2 + 7n - 2}}{\sqrt{9n^2 - 2n + 4}}$$

$$10) \lim_{n \to \infty} \frac{3n}{\sqrt{n^2 + n}}$$

11)
$$\lim_{n\to\infty} \frac{\sqrt[3]{8n^6+4n+1}}{4n^2+2n+1}$$
; 12) $\lim_{n\to\infty} \left(\frac{5n}{n+1}-\frac{1}{n}\right)$;

12)
$$\lim_{n\to\infty} \left(\frac{5n}{n+1} - \frac{1}{n}\right)$$

13)
$$\lim_{n\to\infty} \left(1+\frac{2}{n}\right)^{n+1};$$

14)
$$\lim_{n\to\infty} \left(1-\frac{3n}{n^2+1}\right)^{n+1}$$
; 15) $\lim_{n\to\infty} \left(1+\frac{2}{n+5}\right)^{4n}$;

(15)
$$\lim_{n \to \infty} \left(1 + \frac{2}{n+5} \right)^{4n}$$
;

16)
$$\lim_{n\to\infty} \left(\frac{4n+2}{4n-1}\right)^{3n+1}$$
;

16)
$$\lim_{n\to\infty} \left(\frac{4n+2}{4n-1}\right)^{3n+1}$$
; 17) $\lim_{n\to\infty} \left(\frac{n^2+4}{n^2+1}\right)^{4n^2+3}$; 18) $\lim_{n\to\infty} \left(\frac{2n+4}{2n+1}\right)^{4n-1}$;

$$18) \lim_{n \to \infty} \left(\frac{2n+4}{2n+1} \right)^{4n-1}$$

19)
$$\lim_{n \to \infty} \left(1 - \frac{4}{n^2 + 1} \right)^{2n^2 + 1}$$
; 20) $\lim_{n \to \infty} n \cdot (\ln n - \ln(n + 2))$.

$$20) \lim_{n\to\infty} n \cdot \left(\ln n - \ln(n+2)\right)$$

ГЛАВА ІІ. ФУНКЦИЯ. ЕЁ ПРЕДЕЛ И НЕПРЕРЫВНОСТЬ

2.1 Функция, её свойства

При изучении всевозможных явлений природы, решении технических задач, приходится рассматривать изменение одной величины в зависимости от другой.

Определение 2.1.1. Если каждому значению переменной x из некоторой области соответствует единственное значение другой переменной y, то y — есть функция от x, или в символической записи y = f(x).

Переменная x называется независимой переменной или аргументом; y называют зависимой переменной; зависимость переменных x и y называют функциональной зависимостью; буква f в символической записи функциональной зависимости указывает, что над значением x нужно произвести какие-либо операции, чтобы получить значение y.

Определение 2.1.2. Совокупность значений x, для которых определяются значения функции y в силу правила y = f(x), называется областью определения функции и обозначается D(y) или D(f).

Пример 2.1.1. Найдите область определения функции $y = \cos x$.

Решение. Функция $y = \cos x$ определена при всех значениях x, значит, её областью определения будет бесконечный интервал D(y): $x \in (-\infty; +\infty)$.

Пример 2.1.2. Найдите область определения функции
$$y = \frac{\lg x}{x-5}$$
.

Решение. Область определения данной функции определится двумя условиями: $\begin{cases} x>0 \\ x-5\neq 0 \end{cases}$. Решая данную систему, получим область определения функции: D(y): $x\in (0;5)\cup (5;+\infty)$.

Способами задания функции являются:

- 1) табличный (в определенной последовательности записываются значения аргумента x и соответствующие значения функции y);
- 2) графический (в прямоугольной системе координат дана совокупность точек, причем никакие две точки не лежат на прямой, параллельной оси Oy эта совокупность точек определяет некоторую однозначную функцию y = f(x), где значениями аргумента являются абсциссы точек, значениями функции соответствующие ординаты);

3) аналитический (с помощью формулы y = f(x)).

Определение 2.1.3. Основными элементарными функциями называются следующие аналитическим способом заданные функции:

- степенная функция ($y = x^{\alpha}$, где α действительное число);
- показательная функция ($y = a^x$, где $a > 0, a \ne 1$);
- логарифмическая функция ($y = \log_a x$, где $a > 0, a \ne 1$);
- тригонометрические функции ($y = \sin x$; $y = \cos x$; y = tgx; y = ctgx);
- обратные тригонометрические функции

 $(y = \arcsin x; y = \arccos x; y = arctgx; y = arctgx).$

Определение 2.1.4. Элементарной функцией называется функция, которая может быть задана одной формулой вида y = f(x), где в правой части находится выражение, составленное из элементарных функций и постоянных при помощи конечного числа операций сложения, вычитания, умножения, деления и взятия функции от функции.

К числу алгебраических функций относятся:

- 1) целая рациональная функция или многочлен
- $y = a_0 x^n + a_1 x^{n-1} + \ldots + a_n \,, \, \text{где} \,\, n \, \in N_0 \,, \,\, a_n \, \, \text{константы, называемые коэф-}$ фициентами;
- 2) дробная рациональная функция, определяемая как отношение двух многочленов

$$y = \frac{a_0 x^n + a_1 x^{n-1} + \dots a_n}{b_0 x^m + b_1 x^{m-1} + \dots + b_m};$$

3) иррациональная функция, где в правой части y = f(x) производятся операции сложения вычитания, умножения, деления и возведения в степень с рациональными нецелыми показателями.

Замечание. Функция, не являющаяся алгебраической, называется трансцендентной.

Свойства функции

Определение 2.1.5. Функция y = f(x), заданная на симметричном относительно начала координат промежутке, называется четной, если для любого значения x из данного промежутка выполняется равенство: f(-x) = f(x).

График четной функции симметричен относительно оси Оу.

Например, дана функция $y = x^2 + 2$. Найдем значение y(-x):

$$y(-x) = (-x)^2 + 2 = x^2 + 2 = y(x)$$
,

то есть данная функция четная. Если обратиться к графику этой функции, то действительно можно заметить, что график симметричен относительно оси Oy (рисунок 2.1.1).

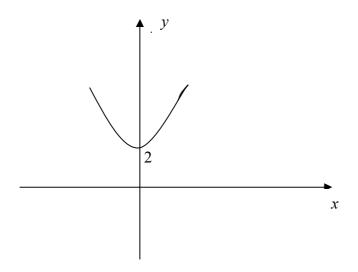


Рисунок 2.1.1 – График функции $y = x^2 + 2$

Определение 2.1.6. Функция y = f(x), заданная на симметричном относительно начала координат промежутке, называется нечетной, если для любого значения x из этого промежутка выполняется равенство: f(-x) = -f(x).

График нечетной функции симметричен относительно начала координат.

Рассмотрим для примера функцию $y = x^3 + 2x$. Найдем значение y(-x):

$$y(-x) = (-x)^3 + 2 \cdot (-x) = -x^3 - 2x = -(x^3 + 2x) = -y(x)$$
.

Выполняется равенство y(-x) = -y(x), следовательно, данная функция — нечетная. Построим график данной функции (рисунок 2.1.2).



Рисунок 2.1.2 – График функции $y = x^3 + 2x$

Сумма и разность двух четных (нечетных) функций есть функция четная (нечетная). Произведение двух четных или нечетных функций есть функция четная, а произведение четной функции на нечетную – есть нечетная функция.

На практике чаще встречаются функции, для которых не выполняется ни равенство f(-x) = f(x), ни равенство f(-x) = -f(x). Такие функции носят название ни четных, ни нечетных функций или функций общего вида.

Определение 2.1.7. Функция y = f(x) возрастает на некотором интервале X, если для любых $x_1 \in X$, $x_2 \in X$, таких что $x_2 > x_1$ выполняется неравенство $f(x_2) > f(x_1)$. Другими словами, большему значению аргумента x соответствует большее значение функции (рисунок 2.1.3).

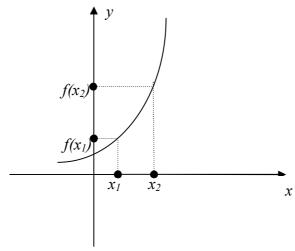


Рисунок 2.1.3 – График возрастающей функции

Определение 2.1.8. Функция y = f(x) убывает на некотором интервале X, если для любых $x_1 \in X$, $x_2 \in X$, таких что $x_2 > x_1$ выполняется неравенство $f(x_2) < f(x_1)$. Другими словами, большему значению аргумента x соответствует меньшее значение функции (рисунок 2.1.4.).

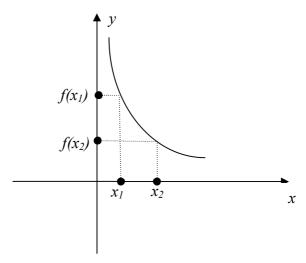


Рисунок 2.1.4 – График убывающей функции

Определение 2.1.9. Точку x_0 называют точкой максимума функции y = f(x), если существует такая окрестность этой точки, что для всех x из этой окрестности справедливо неравенство $f(x_0) \ge f(x)$. Значение функции в точке максимума называют максимумом функции и обозначают y_{max} .

Определение 2.1.10. Точку x_0 называют точкой минимума функции y = f(x), если существует такая окрестность этой точки, что для всех x из этой окрестности справедливо неравенство $f(x_0) \le f(x)$. Значение функции в точке минимума называют минимумом функции и обозначают y_{\min} (рисунок 2.1.5).

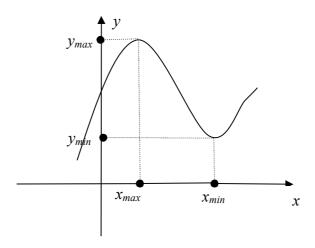


Рисунок 2.1.5 – Точки минимума и максимума функции

Точки минимума и максимума называют *точками экстремума*, а значения функции, соответствующие точкам экстремума, называют *экстремумами* функции.

Определение 2.1.11. Функция y = f(x) называется периодической, если существует такое число $T \neq 0$ (период), что на всей области определения функции выполняется равенство: f(x) = f(x+T).

Период функции определен неоднозначно, то есть если T — период функции, то и любое число $T_1 = T + T + ... + T = nT$ — также период. Наименьшее из всех значений называется основным (или главным) периодом функции.

2.2 Предел функции в точке, его геометрический смысл

Определение 2.2.1 Дельта δ – окрестностью точки $x_{_0}$ называется интервал $(x_{_0} - \delta; x_{_0} + \delta)$.

Символически такая окрестность обозначается $U(x_0; \delta)$.

Геометрически данный интервал можно изобразить следующим образом (рисунок 2.2.1):

$$x_0$$
- δ x_0 x_0 + δ x

Рисунок 2.2.1 — δ — окрестность точки $x_{_0}\left(U\!\left(x_{_0};\delta\right)\right)$

Это множество значений переменной x можно записать с помощью неравенства $|x-x_{\scriptscriptstyle 0}| < \delta$.

Определение 2.2.2 δ – окрестностью точки $x_{_0}$ без самой точки называется объединение интервалов $(x_{_0} - \delta; x_{_0}) \cup (x_{_0}; x_{_0} + \delta)$.

Иначе эту окрестность называют δ – окрестностью с выколотой точкой.

Символическое обозначение окрестности $\overset{\circ}{U}(x_{\scriptscriptstyle 0};\delta)$.

Изобразим данный интервал геометрически (рисунок 2.2.2)

$$\begin{array}{c|c} & & & \\ \hline & x_{0} - \delta & & \\ \hline & x_{0} & & x_{0} + \delta & \\ \end{array}$$

Рисунок 2.2.2 $-\delta$ — окрестность с выколотой точкой $x_{_0}(\overset{^{0}}{U}(x_{_0};\delta))$

Множество значений переменной x, принадлежащих данной окрестности, можно записать в виде неравенств ($|x-x_0| < \delta$, $x \neq x_0$).

Определение 2.2.3 ε — окрестностью точки плюс бесконечность называется бесконечный интервал $(\varepsilon;+\infty)$, где $\varepsilon>0$.

Символически окрестность точки плюс бесконечность обозначают $U(+\infty;\varepsilon)$. Изобразим окрестность геометрически (рисунок 2.2.3).

Рисунок $2.2.3 - \varepsilon$ — окрестность точки плюс бесконечность

Все значения переменной x, входящие в эту окрестность удовлетворяют неравенству $x>\varepsilon$.

Определение 2.2.4 ε — окрестностью точки минус бесконечность называется бесконечный интервал $(-\infty; -\varepsilon)$, где $\varepsilon > 0$.

Символическое обозначение окрестности $U(-\infty;\varepsilon)$.

Изобразим окрестность геометрически (рисунок 2.2.4).

Рисунок 2.2.4 — ε — окрестность точки минус бесконечность

Значения переменной x из этой окрестности, удовлетворяют неравенству $x < -\varepsilon$.

Определение 2.2.5 ε — окрестностью точки бесконечность называется объединение интервалов $(-\infty; -\varepsilon) \cup (\varepsilon; +\infty)$, где $\varepsilon > 0$.

Символически данную окрестность обозначают $U(\infty; \varepsilon)$.

Изобразим окрестность геометрически (рисунок 2.2.5).

Рисунок 2.2.5 — ε — окрестность точки бесконечность

Окрестность точки бесконечность можно представить в виде неравенства $|x|>\varepsilon$.

Определение 2.2.6 Число b называется пределом функции y = f(x) при $x \to a$ (в точке x = a), если для любого положительного числа ε найдется положительное число δ , такое что для всех значений переменной x, взятых из проколотой δ – окрестности точки x = a, значения функции попадут в ε – окрестность числа b.

Символически предел функции в точке обозначают следующим образом:

$$\lim_{x \to a} f(x) = b$$

Выполним геометрическую иллюстрацию данного определения (рисунок 2.2.6).

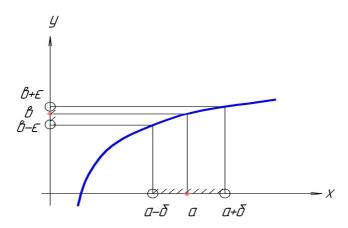


Рисунок 2.2.6 – Геометрическая иллюстрация предела функции в точке

Определение 2.2.6 можно записать с помощью неравенств

Число b называется пределом функции y = f(x) при $x \to a$, если для любого числа $\varepsilon > 0$ найдется число $\delta > 0$, такое что для всех значений переменной x, удовлетворяющих неравенствам ($|x-a| < \delta$; $x \ne a$), значения функции, будут удовлетворять неравенству $|f(x)-b| < \varepsilon$.

Это определение предела функции в точке сформулировано на языке ε – δ по Коши.

Определение 2.2.7 Число b называется пределом функции y = f(x) при $x \to +\infty$ (на $+\infty$), если для любого положительного числа ε найдется положительное число δ , такое что для всех значений переменной x, взятых из δ – окрестности точки $+\infty$, значения функции попадут в ε – окрестность числа b.

Символически предел функции на плюс бесконечности можно обозначить следующим образом:

$$\lim_{x\to +\infty} f(x) = b$$

Рассмотрим геометрическую иллюстрацию предела функции при $x \to +\infty$ (рисунок 2.2.7).

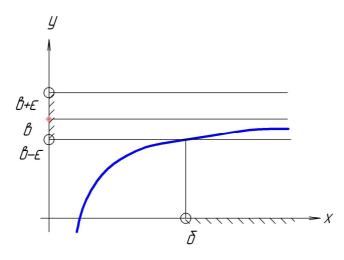


Рисунок 2.2.7 – Геометрическая иллюстрация предела функции при $x \to +\infty$

Запишем определение предела функции на плюс бесконечности с помощью неравенств:

Число b называется пределом функции y=f(x) при $x\to +\infty$, если для любого числа $\varepsilon>0$ найдется число $\delta>0$, такое что для всех значений переменной x, удовлетворяющих неравенству $x>\delta$, значения функции будут удовлетворять неравенству $|f(x)-b|<\varepsilon$.

Аналогично можно сформулировать определение предела функции на минус бесконечности.

Определение 2.2.8 Число b называется пределом функции y = f(x) при $x \to -\infty$ (на $-\infty$), если для любого положительного числа ε найдется положительное число δ , такое что для всех значений переменной x, взятых из δ окрестности точки $-\infty$, значения функции попадут в ε — окрестность числа b.

Символически предел функции на минус бесконечности обозначают следующим образом:

$$\lim f(x) = b$$

Выполним геометрическую иллюстрацию данного определения (рисунок 2.2.8).

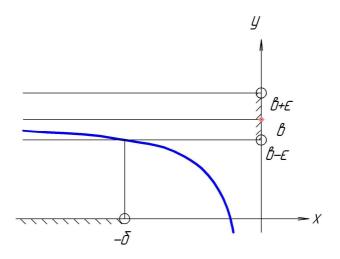


Рисунок 2.2.8 – Геометрическая иллюстрация предела функции при $x \to -\infty$

Теперь запишем определение предела на минус бесконечности, используя неравенства:

Число b называется пределом функции y=f(x) при $x\to -\infty$, если для любого числа $\varepsilon>0$ найдется число $\delta>0$, такое что для всех значений переменной x, удовлетворяющих неравенству $x<-\delta$, значения функции, будут удовлетворять неравенству $|f(x)-b|<\varepsilon$.

Определение 2.2.9 Число b называется пределом функции y = f(x) при $x \to \infty$ (на ∞), если для любого положительного числа ε найдется положительное число δ , такое что для всех значений переменной x, взятых из δ — окрестности точки ∞ , значения функции попадут в ε — окрестность числа b.

Символически предел функции на бесконечности обозначают следующим образом:

$$\lim_{x\to\infty} f(x) = b.$$

Рассмотрим геометрическую иллюстрацию предела функции при $x \to +\infty$ (рисунок 2.2.7)

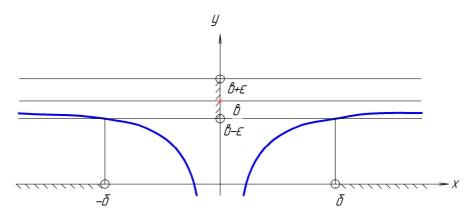


Рисунок 2.2.9 – Геометрическая иллюстрация предела функции при $x \to \infty$

Воспользовавшись соответствующими неравенствами запишем определение предела функции на бесконечности:

Число b называется пределом функции y=f(x) при $x\to\infty$, если для любого числа $\varepsilon>0$ найдется число $\delta>0$, такое что для всех значений переменной x, удовлетворяющих неравенству $|x|>\delta$, значения функции будут удовлетворять неравенству $|f(x)-b|<\varepsilon$.

2.3 Бесконечно большие и бесконечно малые функции и их свойства

В предыдущем пункте мы рассмотрели случаи, когда функция y = f(x) стремится к некоторому числу при $x \to a$ или при $x \to +\infty$, $x \to -\infty$, $x \to -\infty$. Теперь рассмотрим случай, когда функция стремится к бесконечности при некотором способе изменения аргумента.

Определение 2.3.1 Функция y = f(x) стремится к плюс бесконечности при $x \to a$, если для любого числа $\varepsilon > 0$ существует число $\delta > 0$ такое, что для всех значений аргумента x, удовлетворяющих неравенствам ($|x-a| < \delta$; $x \ne a$) значения функции удовлетворяют неравенству $f(x) > \varepsilon$.

Геометрически это определение можно проиллюстрировать на рисунке 2.3.1

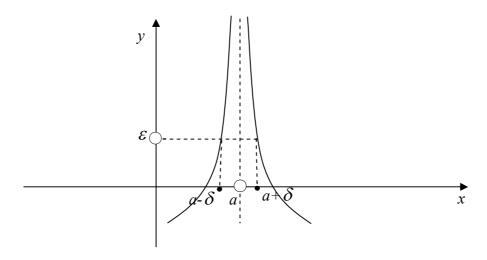


Рисунок 2.3.1 – Графическое изображение $\lim_{x\to a} f(x) = +\infty$

Определение 2.3.2 Функция y = f(x) стремится к минус бесконечности при $x \to a$, если для любого числа $\varepsilon > 0$ существует число $\delta > 0$ такое, что для всех значений аргумента x, удовлетворяющих неравенствам $(|x-a| < \delta; x \neq a)$ значения функции удовлетворяют неравенству $f(x) < -\varepsilon$.

Геометрическая интерпретация этого определения приведена на рисунке 2.3.2.

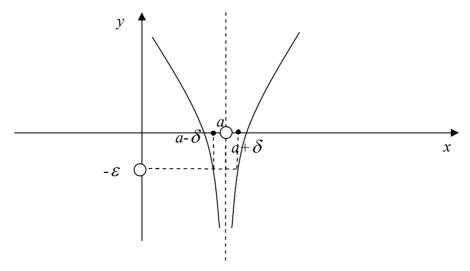


Рисунок 2.3.2 – Графическое изображение $\lim_{x\to a} f(x) = -\infty$

Определение 2.3.3 Функция y = f(x) стремится к бесконечности при $x \to a$, если для любого числа $\varepsilon > 0$ существует число $\delta > 0$ такое, что для всех значений аргумента x, удовлетворяющих неравенствам $(|x-a| < \delta; x \neq a)$ значения функции удовлетворяют неравенству $|f(x)| > \varepsilon$.

Определения аналогичные 2.3.1 – 2.3.3 можно сформулировать при $x \to \infty, x \to -\infty, x \to +\infty$.

Определение 2.3.4 Функции имеющие пределом плюс бесконечность, минус бесконечность или бесконечность называются бесконечно большими функциями.

Отметим некоторые свойства бесконечно больших функций:

- 1. Сумма двух бесконечно больших функций есть функция бесконечно большая.
- 2. Произведение двух бесконечно больших функций есть функция бесконечно большая.
- 3. Сумма бесконечно большой функции и числа есть функция бесконечно большая.

Определение 2.3.5 Функция $y = \alpha(x)$ называется бесконечно малой, если для любого числа $\varepsilon > 0$ существует число $\delta > 0$ такое, что для всех значений аргумента x, удовлетворяющих неравенствам $(|x-a| < \delta; x \neq a)$ значения функции удовлетворяют неравенству $|\alpha(x)| < \varepsilon$.

Из определения бесконечно малой функции следует, что $\lim_{x\to a} \alpha(x) = 0$

Аналогичные определения бесконечно малых функций можно сформулировать при $x \to \infty, \ x \to -\infty, \ x \to +\infty$.

Можно отметить некоторые свойства бесконечно малых функций:

- 1. Алгебраическая сумма двух бесконечно малых функций есть функция бесконечно малая.
- 2. Произведение двух бесконечно малых функций есть функция бесконечно малая.
- 3. Произведение бесконечно малой функции на ограниченную функцию есть функция бесконечно малая.
- 4. Частное от деления бесконечно малой функции на функцию, предел которой отличен от нуля, является функцией бесконечно малой.

Между бесконечно большими и бесконечно малыми функциями также как и между соответствующими последовательностями, существует связь:

1. Если функция y = f(x) бесконечно большая, то функция $\frac{1}{f(x)}$ бесконечно малая;

2. Если функция $y = \alpha(x)$ бесконечно малая и не обращается в нуль, то $\frac{1}{\alpha(x)}$ бесконечно большая.

2.4 Основные теоремы о пределах. Ззамечательные пределы математического анализа

Теорема 2.4.1. Для того, чтобы число A было пределом функции y = f(x) при $x \to a$, необходимо и достаточно, чтобы эта функция была представима в виде $f(x) = A + \alpha(x)$, где $\alpha(x)$ – бесконечно малая при $x \to a$.

Теорема 2.4.2. Предел постоянной величины равен самой постоянной.

Теорема 2.4.3. Если функции $f_1(x)$ и $f_2(x)$ имеют пределы при $x \to a$, то при $x \to a$ имеют пределы также их сумма $f_1(x) + f_2(x)$, произведение $f_1(x) \cdot f_2(x)$ и при условии $\lim_{x \to a} f_2(x) \neq 0$ частное $\frac{f_1(x)}{f_2(x)}$, причем

$$\lim_{x \to a} (f_1(x) + f_2(x)) = \lim_{x \to a} f_1(x) + \lim_{x \to a} f_2(x); \tag{2.4.1}$$

$$\lim_{x\to a} (f_1(x)\cdot f_2(x)) = \lim_{x\to a} f_1(x)\cdot \lim_{x\to a} f_2(x);$$

(2.4.2)

$$\lim_{x \to a} \frac{f_1(x)}{f_2(x)} = \frac{\lim_{x \to a} f_1(x)}{\lim_{x \to a} f_2(x)}$$
(2.4.3)

Следствие 1. Если функция y = f(x) имеет предел при $x \to a$, то

$$\lim_{x \to a} (f(x))^n = \left(\lim_{x \to a} f(x)\right)^n \tag{2.4.4}$$

Следствие 2. Постоянный множитель можно выносить за знак предела

$$\lim_{x \to a} (C \cdot f_1(x)) = C \lim_{x \to a} f_1(x)$$
 (2.4.5)

Замечательные пределы

Можно доказать, что для бесконечно малых функций справедливо равенство

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \tag{2.4.6},$$

называемое в математике *первым замечательным пределом*. Первый замечательный предел устраняет математическую неопределенность вида $\frac{0}{0}$.

Можно доказать, что для функции $y = \left(1 + \frac{1}{x}\right)^x$ при непрерывном изменении аргумента x и стремлении его к плюс бесконечности пределом будет служить число $e \approx 2,7$, то есть

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e \tag{2.4.7}$$

Эта формула устраняет математическую неопределенность $[1^{\infty}]$ и называется вторым замечательным пределом.

Второй замечательный предел можно записать иначе

$$\lim_{x \to a} (1 + \alpha(x))^{\frac{1}{\alpha(x)}} = e, \text{ если } \alpha(x) \to 0 \text{ при } x \to a.$$

2.5 Сравнение бесконечно малых

Пусть функции $\alpha(x)$ и $\beta(x)$ бесконечно малые при $x \to a$ (или при $x \to +\infty$, $x \to -\infty$, $x \to \infty$). Рассмотрим предел отношения этих функций при $x \to a$ и введем следующие определения.

Определение 2.5.1 Функции $\alpha(x)$ и $\beta(x)$ называются бесконечно малыми одного порядка малости при $x \to a$, если $\lim_{x \to a} \frac{\alpha(x)}{\beta(x)}$ конечен и отличен от нуля.

Например, функции $\alpha(x)=x^2-9$ и $\beta(x)=2x^2-5x-3$ являются бесконечно малыми одного порядка малости при $x \to 3$ так как:

$$\lim_{x \to 3} \frac{x^2 - 9}{2x^2 - 5x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 3)}{(x - 3)(2x + 1)} = \lim_{x \to 3} \frac{x + 3}{2x + 1} = \frac{6}{7} \neq 0.$$

Это означает, что функции примерно с одной скоростью стремятся к нулю, при $x \to 3$.

Определение 2.5.2 Функция $\alpha(x)$ называется бесконечно малой более высокого порядка малости при $x \to a$, чем $\beta(x)$, если $\lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = 0$.

Функция $\alpha(x)=x^2$ при $x\to 0$ является бесконечно малой более высокого порядка малости, чем функция $\beta(x)=6x$, так как $\lim_{x\to 0}\frac{x^2}{6x}=\lim_{x\to 0}\frac{x}{6}=0$. Из этого

примера можно сделать вывод, что функция $\alpha(x)$ стремится к нулю быстрее, чем функция $\beta(x)$, если $x \to 0$.

Определение 2.5.3 Функция $\alpha(x)$ называется бесконечно малой более низкого порядка малости при $x \to a$, чем $\beta(x)$ если $\lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = \infty$.

Рассмотрим функции $\alpha(x)=2x^3$ и $\beta(x)=5x^4$, которые являются бесконечно малыми при $x\to 0$, причем функция $\alpha(x)$ бесконечно малая более низкого порядка малости, чем функция $\beta(x)$. Это легко доказать, если вычислить предел отношения этих функций: $\lim_{x\to 0} \frac{\alpha(x)}{\beta(x)} = \lim_{x\to 0} \frac{2x^3}{5x^4} = \lim_{x\to 0} \frac{2}{5x} = \frac{1}{0} = \infty$.

Определение 2.5.4 Функции $\alpha(x)$ и $\beta(x)$ называются несравнимыми бесконечно малыми при $x \to a$, если $\lim_{x \to a} \frac{\alpha(x)}{\beta(x)}$ не существует и не равен ∞ .

Примером несравнимых бесконечно малых функций являются функции $\alpha(x) = \frac{\cos x}{x} \text{ и } \beta(x) = \frac{1}{x} \text{ при } x \to +\infty \text{, так как } \lim_{x \to +\infty} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to +\infty} \frac{x \cos x}{x} = \lim_{x \to +\infty} \cos x \text{ не существует.}$

Определение 2.5.5 Функции $\alpha(x)$ и $\beta(x)$ называются эквивалентными бесконечно малыми при $x \to a$, если $\lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = 1$.

Из последнего определения следует, что эквивалентные бесконечно малые функции имеют одинаковый порядок малости. Эквивалентные функции символически будем обозначать $\alpha(x) \sim \beta(x)$.

Например, функции $x, \sin x, tgx$ являются эквивалентными бесконечно малыми при $x \to 0$, так как $\lim_{x\to 0} \frac{\sin x}{x} = 1$ (первый замечательный предел, формула 2.4.6) и

$$\lim_{x \to 0} \frac{tgx}{x} = \lim_{x \to 0} \frac{\sin x}{x} \lim_{x \to 0} \frac{1}{\cos x} = 1.$$

Таким образом, $\sin x \sim x$ и $tgx \sim x$.

Для эквивалентных бесконечно малых функций можно сформулировать несколько очень важных теорем.

Теорема 2.5.1. Если существует предел отношения (произведения) бесконечно малых функций, то будет существовать и предел отношения (произве-

дения) эквивалентных им бесконечно малых функций, причем эти пределы равны.

Из теоремы следует, что если $\alpha(x)$, $\beta(x)$, $\alpha_1(x)$, $\beta_1(x)$ бесконечно малые функции при $x \to a$, причем $\alpha(x) \sim \alpha_1(x)$ и $\beta(x) \sim \beta_1(x)$, то

$$\lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to a} \frac{\alpha_1(x)}{\beta_1(x)}$$
(2.5.1)

$$\lim_{x\to a}\alpha(x)\cdot\beta(x)=\lim_{x\to a}\alpha_1(x)\beta_1(x)$$

(2.5.2)

Теорема 2.5.2. Сумма конечного числа бесконечно малых функций различных порядков малости эквивалентна слагаемому низшего порядка малости.

Составим таблицу эквивалентных бесконечно малых функций.

Таблица 2.5.1 – Эквивалентные бесконечно малые

$\sin\alpha(x) \sim \alpha(x)$	$e^{\alpha(x)}-1\sim\alpha(x)$
$tg\alpha(x) \sim \alpha(x)$	$a^{\alpha(x)} - 1 \sim \alpha(x) \ln a$
$1-\cos\alpha(x)\sim\frac{(\alpha(x))^2}{2}$	$\ln(1+\alpha(x))\sim\alpha(x)$
$\arcsin \alpha(x) \sim \alpha(x)$	$(1+\alpha(x))^n-1\sim n\alpha(x)$
$arctg\alpha(x) \sim \alpha(x)$	$\sqrt[n]{1+\alpha(x)}-1\sim \frac{\alpha(x)}{n}$

Приведенные в таблице 2.5.1 формулы справедливы при $\alpha(x) \to 0$.

2.6 Непрерывность и точки разрыва функции

Представление о непрерывности функции так или иначе связано с тем, что её график представляет собой плавную, нигде не прерывающуюся линию, которую можно пройти, не отрывая карандаша. Если рассмотреть график такой функции y = f(x), то мы увидим, что близким значениям аргумента соответствуют близкие значения функции. Таким образом, если аргумент x приближается к точке x_0 или, как говорят, стремится к точке x_0 , то значения функции y = f(x) неограниченно приближается к значению функции в точке x_0 , то есть к числу $f(x_0)$. Однако существует строгое определение непрерывности функции, причем таких определений можно сформулировать несколько.

Определение.2.6.1 Функция y = f(x) называется непрерывной в точке x_0 если:

- 1) она определена в точке $x=x_0$;
- 2) определена в окрестности этой точки;
- 3) предел функции при $x \to x_{\scriptscriptstyle 0}$ равен значению функции в этой точке, то есть

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Определение.2.6.2 Функция y = f(x) называется непрерывной в точке x_0 , если:

- 1) она определена в точке $x=x_0$;
- 2) определена в окрестности точки $x=x_0$;
- 3) левосторонний предел равен правостороннему и равен значению функции в этой точке, то есть

$$\lim_{x \to x_0 - 0} f(x) = \lim_{x \to x_0 + 0} f(x) = f(x_0).$$

Определение.2.6.3. Функция y = f(x) называется непрерывной в точке $x = x_0$, если:

- 1) она определена в точке $x=x_0$;
- 2) определена в окрестности точки $x=x_0$;
- 3) бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции, то есть

$$\lim_{\Delta x \to 0} \Delta y = 0.$$

Если в точке $x_{_0}$ функция непрерывна, то точка $x_{_0}$ называется точкой непрерывности данной функции.

Если хотя бы одно из трех условий определений 2.6.1, 2.6.2, 2.6.3 не выполняется, то функция в точке x_0 называется разрывной, а сама точка x_0 называется точкой разрыва функции.

Точки разрыва можно разбить на два типа.

Определение.2.6.4. Точка разрыва x_0 функции y = f(x) называется точкой разрыва первого рода, если существуют оба односторонних предела $\lim_{x \to x_0 - 0} f(x)$ и $\lim_{x \to x_0 + 0} f(x)$.

Определение.2.6.5. Точка разрыва, не являющаяся точкой разрыва первого рода, называется точкой разрыва второго рода.

Таким образом, если $\lim_{x\to x_0} f(x)$ существует, но функция f(x) в точке x_0 не определена или определена, но так, что $\lim_{x\to x_0} f(x) \neq f(x_0)$, то точка x_0 является точкой разрыва I рода, называемой точкой устранимого разрыва.

Если $\lim_{x \to x_0} f(x)$ не существует, но существуют оба односторонних предела в точке x_0 , причем $\lim_{x \to x_0 = 0} f(x) \neq \lim_{x \to x_0 = 0} f(x)$, то разрыв в точке x_0 является разрывом первого рода, который называется скачком:

в) если хотя бы один из односторонних пределов не существует (в частности, равен бесконечности), и, следовательно, не существует и $\lim_{x\to x_0} f(x)$, то в точке x_0 функция терпит разрыв второго рода.

Пример 2.6.1. Найдите точки разрыва функции, если они существуют,

определите вид точек разрыва. Выполните чертеж:
$$y = \begin{cases} -(x+1)^2, & x \le 0 \\ x-1, & 0 < x < 2 \end{cases}$$
. Решение. Эта функция является непрерывной во всех точках, кром

Решение. Эта функция является непрерывной во всех точках, кроме, быть может, точек x = 0 или x = 2. Исследуем их.

1) рассмотрим точку x = 0.

$$f(0) = -(0+1)^2 = -1$$
, то есть функция определена в точке $x = 0$

Вычислим односторонние пределы: $\lim_{x\to 0-0} f(x) = \lim_{x\to 0-0} (-(x+1)^2) = -1$

$$\lim_{x \to 0+0} f(x) = \lim_{x \to 0+0} (x-1) = -1$$

Получили, что $f(0) = \lim_{x \to 0-0} f(x) = \lim_{x \to 0+0} f(x)$, то есть данная функция являетя непрерывной в точке x = 0.

2) рассмотрим точку x = 2.

f(2) = 3, то есть функция определена в точке x = 2

Вычислим односторонние пределы: $\lim_{x\to 2-0} f(x) = \lim_{x\to 2-0} (x-1) = 1$;

$$\lim_{x \to 2+0} f(x) = \lim_{x \to 2+0} 3 = 3$$

Получили случай, когда функция определена в точке x=2, имеет конечные односторонние пределы в этой точке, но они не равны между собой: $f(2) = \lim_{x \to 2+0} f(x) \neq \lim_{x \to 2-0} f(x)$. То есть в точке x=2 (по определению 2.6.2) нарушено третье условие, следовательно, это точка является точкой разрыва первого рода.

Выполним чертеж (рисунок 2.6.1).

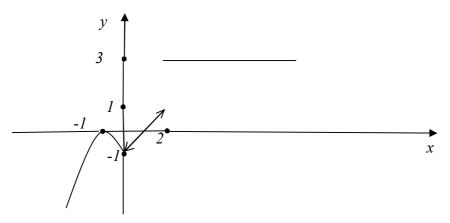


Рисунок 2.6.1 – График функции
$$y = \begin{cases} -(x+1)^2, & x \le 0 \\ x-1, & 0 < x < 2 \\ 3, & x \ge 2 \end{cases}$$

<u>Пример 2.6.2.</u> Исследуйте на непрерывность и найдите точки разрыва функции $y = \frac{x}{x^2 - 9}$, определите их вид. Выполните схематично чертеж.

Решение. Эта функция является дробно-рациональной, и поэтому она непрерывна во всех точках, в которых знаменатель отличен от нуля. В точках x_1 =—3 и x_2 =3 функция не определена, и поэтому терпит разрыв. Нетрудно проверить, что в обеих этих точках односторонние пределы бесконечные:

$$\lim_{x \to -3-0} \frac{x}{x^2 - 9} = -\infty, \ \lim_{x \to -3+0} \frac{x}{x^2 - 9} = +\infty \ ; \ \lim_{x \to 3-0} \frac{x}{x^2 - 9} = -\infty, \ \lim_{x \to 3+0} \frac{x}{x^2 - 9} = +\infty$$

Следовательно, $x = \pm 3$ — точки разрыва второго рода (рисунок 2.6.2).

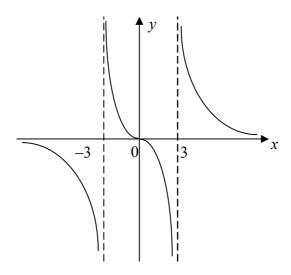


Рисунок 2.6.2 – График функции $y = \frac{x}{x^2 - 9}$

<u>Пример 2.6.3.</u> Исследуйте функцию $y = 7^{\frac{1}{x-4}}$ на непрерывность, найдите точки разрыва функции и определите их вид. Выполните схематично чертеж.

Решение. Для исследования функции $y = 7^{\frac{1}{x-4}}$ на непрерывность необходимо проверить три условия определения функции непрерывной в точке (определение 2.6.2):

- 1) функция определена в точке $x=x_0$;
- 2) функция определена в окрестности точки $x=x_0$;
- 3) левосторонний предел равен правостороннему и равен значению функции в этой точке, то есть

$$\lim_{x \to x_0 - 0} f(x) = \lim_{x \to x_0 + 0} f(x) = f(x_0).$$

Для проверки первых двух условий достаточно найти область определения функции:

$$D(y)$$
: $x \neq 4$ или $x \in (-\infty;4) \cup (4;+\infty)$.

Из области определения функции следует, что в точке x = 4 функция неопределена, то есть не выполняется первое условие определения непрерывной функции в точке (2.6.2). Это означает, что в точке x = 4 функция терпит разрыв. Определим вид разрыва. Для этого проверим третье условие определения (2.6.2).

Найдем левосторонний предел функции в точке x = 4:

$$\lim_{x \to 4-0} 7^{\frac{1}{x-4}} = \left[7^{\frac{1}{4-0-4}} = 7^{\frac{1}{-0}} = 7^{-\infty} = \frac{1}{7^{\infty}} = \frac{1}{\infty} \right] = 0$$

Найдем правосторонний предел фускции в точке x = 4:

$$\lim_{x \to 4+0} 7^{\frac{1}{x-4}} = \left[7^{\frac{1}{4+0-4}} = 7^{\frac{1}{+0}} = 7^{+\infty} \right] = +\infty$$

Согласно определению (2.6.2) в точке x = 4 функция $y = 7^{\frac{1}{x-4}}$ терпит разрыв II рода, то есть прямая x = 4 является вертикальной асимптотой функции.

Для схематичного построения графика функции определим поведение функции на плюс и минус бесконечности:

$$\lim_{x \to +\infty} 7^{\frac{1}{x-4}} = \left[= 7^{\frac{1}{+\infty}} = 7^{0} \right] = 1;$$

$$\lim_{x \to -\infty} 7^{\frac{1}{x-4}} = \left[= 7^{\frac{1}{-\infty}} = 7^{0} \right] = 1.$$

То есть при $x \to +\infty$, функция $y = 7^{\frac{1}{x-4}}$ стремится к единице, оставаясь больше единицы (сверху); при $x \to -\infty$, функция $y = 7^{\frac{1}{x-4}}$ стремится к единице, оставаясь меньше единицы (снизу). Это означает, что прямая y = 1 является горизонтальной асимптотой функции.

Пользуясь полученными результатами, построим график функции (рисунок 2.6.3).

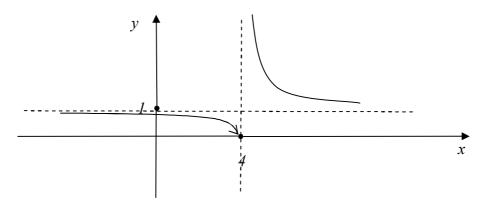


Рисунок 2.6.3 – Схематичный график функции $y = 7^{\frac{1}{x-4}}$

<u>Пример 2.6.4.</u> Исследуйте функцию $y = 5^{\frac{1}{4-x}}$ на непрерывность, найдите точки разрыва функции и определите их вид. Выполните схематично чертеж.

Решение. Для исследования функции $y = 5^{\frac{1}{4-x}}$ на непрерывность необходимо проверить три условия определения функции непрерывной в точке (определение 2.6.2):

- 1) функция определена в точке $x=x_0$;
- 2) функция определена в окрестности точки $x=x_0$;
- 3) левосторонний предел равен правостороннему и равен значению функции в этой точке, то есть

$$\lim_{x \to x_0 - 0} f(x) = \lim_{x \to x_0 + 0} f(x) = f(x_0).$$

Для проверки первых двух условий достаточно найти область определения функции:

$$D(y)$$
: $x \neq 4$ или $x \in (-\infty;4) \cup (4;+\infty)$.

Из области определения функции следует, что в точке x = 4 функция неопределена, то есть не выполняется первое условие определения непрерывной функции в точке (2.6.2). Это означает, что в точке x = 4 функция терпит разрыв.

Определим вид разрыва. Для этого проверим третье условие определения (2.6.2).

Найдем левосторонний предел функции в точке x = 4:

$$\lim_{x \to 4-0} 5^{\frac{1}{4-x}} = \left[5^{\frac{1}{4-4+0}} = 5^{\frac{1}{+0}} = 5^{+\infty} \right] = +\infty$$

Найдем правосторонний предел фуекции в точке x = 4:

$$\lim_{x \to 4+0} 5^{\frac{1}{4-x}} = \left\lceil 5^{\frac{1}{4-4-0}} = 5^{\frac{1}{-0}} = 5^{-\infty} = \frac{1}{5^{+\infty}} = \frac{1}{\infty} \right\rceil = 0$$

Согласно определению (2.6.2) в точке x = 4 функция $y = 5^{\frac{1}{4-x}}$ терпит разрыв II рода, то есть прямая x = 4 является вертикальной асимптотой функции.

Для схематичного построения графика функции определим поведение функции на плюс и минус бесконечности:

$$\lim_{x \to +\infty} 5^{\frac{1}{4-x}} = \left[= 5^{\frac{1}{-\infty}} = 5^{-0} \right] = 1;$$

$$\lim_{x \to -\infty} 5^{\frac{1}{4-x}} = \left[= 5^{\frac{1}{+\infty}} = 5^{+0} \right] = 1.$$

То есть при $x \to +\infty$, функция $y = 5^{\frac{1}{4-x}}$ стремится к единице, оставаясь меньше единицы (снизу); при $x \to -\infty$, функция $y = 5^{\frac{1}{4-x}}$ стремится к единице, оставаясь больше единицы (сверху). Это означает, что прямая y = 1 является горизонтальной асимптотой функции.

Пользуясь полученными результатами, построим график функции (рисунок 2.6.4).

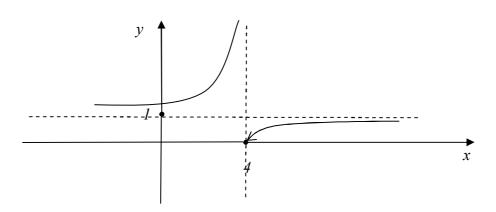


Рисунок 2.6.4 – Схематичный график функции $y = 5^{\frac{1}{4-x}}$

<u>Пример 2.6.5.</u> Исследуйте функцию $y = \left(\frac{1}{7}\right)^{\frac{1}{x+4}}$ на непрерывность, найдите точки разрыва функции.

Решение. Для исследования функции $y = \left(\frac{1}{7}\right)^{\frac{1}{x+4}}$ на непрерывность, необходимо проверить три условия определения функции непрерывной в точке (определение 2.6.2):

- 1) функция определена в точке $x=x_0$;
- 2) функция определена в окрестности точки $x=x_0$;
- 3) левосторонний предел равен правостороннему и равен значению функции в этой точке, то есть

$$\lim_{x \to x_0 - 0} f(x) = \lim_{x \to x_0 + 0} f(x) = f(x_0).$$

Для проверки первых двух условий достаточно найти область определения функции:

$$D(y)$$
: $x \neq -4$ или $x \in (-\infty; -4) \cup (-4; +\infty)$.

Из области определения функции следует, что в точке x = -4 функция неопределена, то есть не выполняется первое условие определения непрерывной функции в точке (2.6.2). Это означает, что в точке x = -4 функция терпит разрыв. Определим вид разрыва. Для этого проверим третье условие определения (2.6.2).

Найдем левосторонний предел функции в точке x = -4:

$$\lim_{x \to -4-0} \left(\frac{1}{7}\right)^{\frac{1}{x+4}} = \left[\left(\frac{1}{7}\right)^{\frac{1}{-4-0+4}} = \left(\frac{1}{7}\right)^{\frac{1}{-0}} = \left(\frac{1}{7}\right)^{-\infty} = 7^{+\infty} \right] = +\infty$$

Найдем правосторонний предел функции в точке x = -4:

$$\lim_{x \to -4+0} \left(\frac{1}{7}\right)^{\frac{1}{x+4}} = \left[\left(\frac{1}{7}\right)^{\frac{1}{-4+0+4}} = \left(\frac{1}{7}\right)^{\frac{1}{+0}} = \left(\frac{1}{7}\right)^{+\infty}\right] = 0$$

Согласно определению (2.6.2) в точке x = -4 функция $y = \left(\frac{1}{7}\right)^{\frac{1}{x+4}}$ терпит разрыв II рода, то есть прямая x = -4 является вертикальной асимптотой функции.

Для схематичного построения графика функции определим поведение функции на плюс и минус бесконечности:

$$\lim_{x \to +\infty} \left(\frac{1}{7}\right)^{\frac{1}{x+4}} = \left[= \left(\frac{1}{7}\right)^{\frac{1}{+\infty}} = \left(\frac{1}{7}\right)^{+0} \right] = 1;$$

$$\lim_{x \to -\infty} \left(\frac{1}{7}\right)^{\frac{1}{x+4}} = \left[= \left(\frac{1}{7}\right)^{\frac{1}{-\infty}} = \left(\frac{1}{7}\right)^{-0} \right] = 1.$$

То есть при $x \to +\infty$, функция $y = \left(\frac{1}{7}\right)^{\frac{1}{x+4}}$ стремится к единице, оставаясь

больше единицы (сверху); при $x \to -\infty$, функция $y = \left(\frac{1}{7}\right)^{\frac{1}{x+4}}$ стремится к единице, оставаясь меньше единицы (снизу). Это означает, что прямая y = 1 является горизонтальной асимптотой функции.

Пользуясь полученными результатами, построим график функции (рисунок 2.6.5).

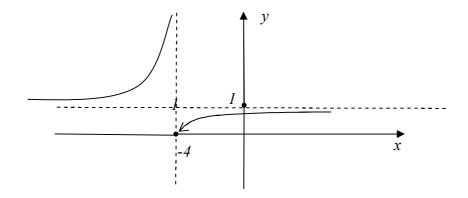


Рисунок 2.6.5 – Схематичный график функции $y = \left(\frac{1}{7}\right)^{\frac{1}{x+4}}$

2.7 Функция и её предел в задачах

В простейших случаях нахождение предела сводится к подстановке в данное выражение предельного значения аргумента. Часто, однако, подстановка предельного значения аргумента приводит к неопределенным выражениям

вида $\frac{0}{0}$, $\frac{\infty}{\infty}$, $0 \cdot \infty$, $\infty - \infty$, 0^{0} , ∞^{0} , 1^{∞} , которые называются математическими неопределенностями

Нахождение предела функции в этих случаях называют раскрытием или устранением математических неопределённостей того или иного вида. Часто приходится, прежде чем перейти к пределу, проводить преобразования данного выражения.

Пример 2.7.1. Найдите предел функции
$$\lim_{x\to 2} \frac{x^2 - 5x + 6}{x^2 - 12x + 20}$$

Решение. В данном примере нельзя непосредственно применить теорему о пределе дроби, так как непосредственная подстановка предельного значения аргумента приводит к неопределенности вида $\left\lceil \frac{0}{0} \right\rceil$.

Совершенно очевидно, что при $x \to 2$ предел числителя дроби

$$\lim_{x \to 2} (x^2 - 5x + 6) = \lim_{x \to 2} x^2 - 5 \lim_{x \to 2} x + \lim_{x \to 2} 6 = 0$$

и предел знаменателя

$$\lim_{x \to 2} (x^2 - 12x + 20) = \lim_{x \to 2} x^2 - 12 \lim_{x \to 2} x + \lim_{x \to 2} 20 = 0.$$

Поэтому нахождение предела этой дроби сводится к раскрытию неопределенности вида $\left[\frac{0}{0}\right]$. Для этого преобразуем дробь, разложив числитель, и

знаменатель на множители:

$$\lim_{x \to 2} \frac{x^2 - 5x + 6}{x^2 - 12x + 20} = \left[\frac{0}{0} \right] = \lim_{x \to 2} \frac{(x - 2)(x - 3)}{(x - 2)(x - 10)} = \lim_{x \to 2} \frac{x - 3}{x - 10} = \frac{-1}{-8} = \frac{1}{8};$$

Пример 2.7.2. Найдите предел функции
$$\lim_{x\to 3} \frac{2x^2-5x-3}{\sqrt{5x+1}-4}$$
.

Решение. Здесь мы также имеем математическую неопределенность вида $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Чтобы раскрыть неопределенность в данном примере необходимо разложить числитель на множители, как было сделано в предыдущем примере и умножить числитель и знаменатель дроби на выражение сопряженное знаменателю, чтобы избавиться от иррациональности.

$$\lim_{x \to 3} \frac{2x^2 - 5x - 3}{\sqrt{5x + 1} - 4} = \left[\frac{0}{0}\right] = \lim_{x \to 3} \frac{(2x + 1)(x - 3)(\sqrt{5x + 1} + 4)}{(\sqrt{5x + 1} - 4)(\sqrt{5x + 1} + 4)} = \lim_{x \to 3} \frac{(2x + 1)(x - 3)(\sqrt{5x + 1} + 4)}{(\sqrt{5x + 1})^2 - 4^2} = \lim_{x \to 3} \frac{(2x + 1)(x - 3)(\sqrt{5x + 1} + 4)}{5x + 1 - 16} = \lim_{x \to 3} \frac{(2x + 1)(x - 3)(\sqrt{5x + 1} + 4)}{5x - 15} = \lim_{x \to 3} \frac{(2x + 1)(x - 3)(\sqrt{5x + 1} + 4)}{5(x - 3)} = \lim_{x \to 3} \frac{(2x + 1)(\sqrt{5x + 1} + 4)}{5(x - 3)} = \frac{7 \cdot 8}{5} = \frac{56}{5}$$

Пример 2.7.3. Найдите предел функции
$$\lim_{x\to 0} \frac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4}$$

Решение. Очевидно, что при вычислении предела мы имеем неопределенность вида $\left[\frac{0}{0}\right]$; Для ее раскрытия, умножаем числитель, и знаменатель дроби на выражения, сопряженные числителю и знаменателю.

$$\lim_{x \to 0} \frac{\sqrt{x^2 + 1} - 1}{\sqrt{x^2 + 16} - 4} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \lim_{x \to 0} \frac{\left(\sqrt{x^2 + 1} - 1\right)\left(\sqrt{x^2 + 1} + 1\right)\left(\sqrt{x^2 + 16} + 4\right)}{\left(\sqrt{x^2 + 16} - 4\right)\left(\sqrt{x^2 + 1} + 1\right)\left(\sqrt{x^2 + 16} + 4\right)} = \\ = \lim_{x \to 0} \frac{\left(\sqrt{x^2 + 16} + 4\right)\left(\left(\sqrt{x^2 + 1}\right)^2 - 1^2\right)}{\left(\sqrt{x^2 + 1} + 1\right)\left(\left(\sqrt{x^2 + 16}\right)^2 - 4^2\right)} = \lim_{x \to 0} \frac{\left(x^2 + 1 - 1\right)\left(\sqrt{x^2 + 16} + 4\right)}{\left(x^2 + 16 - 16\right)\left(\sqrt{x^2 + 1} + 1\right)} = \\ = \lim_{x \to 0} \frac{x^2 \cdot \left(\sqrt{x^2 + 16} + 4\right)}{x^2 \cdot \left(\sqrt{x^2 + 16} + 4\right)} = \lim_{x \to 0} \frac{\left(\sqrt{x^2 + 16} + 4\right)}{\left(\sqrt{x^2 + 16} + 4\right)} = \frac{8}{2} = 4.$$

Пример 2.7.4. Найдите предел функции $\lim_{x\to\infty} \frac{3x^2 + 5x - 1}{x^2 - 6x - 1}$.

Решение. В данном случае имеем неопределенность вида $\left[\frac{\infty}{\infty}\right]$. Для её устранения числитель и знаменатель поделим почленно на x^2 :

$$\lim_{x \to 0} \frac{3x^2 + 5x - 1}{x^2 - 6x - 1} = \left[\frac{\infty}{\infty}\right] = \lim_{x \to 0} \frac{3 + \frac{5}{x} - \frac{1}{x^2}}{1 - \frac{6}{x} - \frac{1}{x^2}} = 3, \quad \text{(Tak} \quad \text{kak} \quad \lim_{x \to \infty} \frac{5}{x} = 0, \quad \lim_{x \to \infty} \frac{6}{x} = 0,$$

$$\lim_{x \to \infty} \frac{1}{x^2} = 0.$$

<u>Пример 2.7.5</u>. Найдите предел функции $\lim_{x\to 0} \frac{tg3x}{e^{5x}-1}$

Решение. При вычислении пределов трансцендентных функций часто пользуются теоремой 2.5.1, то есть формулой 2.5.1 и таблицей 2.5.1 эквивалентных бесконечно малых

Можно заметить, что при $x \to 0$ числитель дроби $tgx \to 0$ и знаменатель дроби $e^{5x} - 1 \to 0$. Таким образом, получаем математическую неопределенность вида $\left\lfloor \frac{0}{0} \right\rfloor$. По теореме 2.5.1 всякую бесконечно малую функцию можно заменить эквивалентной бесконечно малой функцией. Тогда

$$\lim_{x \to 0} \frac{tg3x}{e^{5x} - 1} = \left[\frac{tg\alpha(x) \sim \alpha(x)}{e^{\alpha(x)} - 1 \sim \alpha(x)} \right] = \lim_{x \to 0} \frac{3x}{5x} = \lim_{x \to 0} \frac{3}{5} = \frac{3}{5}.$$

<u>Пример 2.7.6.</u> Найдите предел функции $\lim_{x\to 0} \frac{arctg3x}{1-\cos 4x}$

Решение.

$$\lim_{x \to 0} \frac{\operatorname{arctg} 3x}{1 - \cos 4x} = \left[\frac{0}{0}\right] = \left[\frac{\operatorname{arctg} \alpha(x) \sim \alpha(x)}{1 - \cos \alpha(x) \sim \frac{(\alpha(x))^2}{2}}\right] = \lim_{x \to 0} \frac{3x}{\frac{(4x)^2}{2}} = \lim_{x \to 0} \frac{3x}{8x^2} = \lim_{x \to$$

$$\lim_{x \to 0} \frac{3}{8x} = \frac{3}{0} = \infty.$$

Пример 2.7.7. Найдите предел функции $\lim_{x\to 0} \frac{7^{4y}-1}{\ln(1-5x)}$.

Решение.

$$\lim_{x \to 0} \frac{7^{4u} - 1}{\ln(1 - 5x)} = \left[\frac{0}{0}\right] = \left[\frac{a^{\alpha(x)} - 1 \sim \alpha(x) \ln a}{\ln(1 + \alpha(x)) \sim \alpha(x)}\right] = \lim_{x \to 0} \frac{7^{4u} - 1}{\ln(1 + (-5x))} = \lim_{x \to 0} \frac{4x \cdot \ln 7}{-5x} = \lim_{x \to 0} \frac{4 \cdot \ln 7}{-5x} = -\frac{4}{5} \ln 7.$$

<u>Пример 2.7.8</u>. Найдите предел функции $\lim_{x\to 0} \frac{e^{4x} - e^{-2x}}{\arcsin 8x}$.

Решение.

$$\lim_{x \to 0} \frac{e^{4x} - e^{-2x}}{\arcsin 8x} = \left[\frac{0}{0}\right] = \lim_{x \to 0} \frac{e^{-2x} \left(e^{6x} - 1\right)}{\arcsin 8x} = \left[\frac{\arcsin \alpha(x) \sim \alpha(x)}{e^{\alpha(x)} - 1 \sim \alpha(x)}\right] = \lim_{x \to 0} \frac{e^{-2x} \cdot 6}{8} = \frac{6}{8} = \frac{3}{4}.$$

<u>Пример 2.7.9.</u> Найдите предел функции $\lim_{x\to\infty} \left(\frac{2x+5}{2x-4}\right)^{3x-2}$

Решение.

$$\lim_{x\to\infty} \left(\frac{2x+5}{2x-4}\right)^{3x-2} = \left[1^{\infty}\right] = \lim_{x\to\infty} \left(1 + \frac{2x+5}{2x-4} - 1\right)^{3x-2} = \lim_{x\to\infty} \left(1 + \frac{2x+5-2x+4}{2x-4}\right)^{3x-2} = \lim_{x\to\infty} \left(1 + \frac{9}{2x-4}\right)^{3x-2} = \left[\frac{\sec n\cos n\cos y + \sec n\cos n\cos y}{\sec n\cos n\cos y}\right] = \lim_{x\to\infty} \left(1 + \frac{1}{x}\right)^{x} = e = \lim_{x\to\infty} \left(1 + \frac{9}{2x-4}\right)^{\frac{2x-4}{9}} = e^{\frac{27}{2x-4}} = e^{\frac{1\cos 27x-18}{2x-4}} = e^{\frac{27}{2}} = \sqrt{e^{27}}.$$

$$= \left[\lim_{x\to\infty} \left(1 + \frac{9}{2x-4}\right)^{\frac{2x-4}{9}}\right]^{\frac{27x}{2x-4}} = e^{\frac{1\cos 27x-18}{2x-4}} = e^{\frac{27}{2}} = \sqrt{e^{27}}.$$

Задачи для самостоятельного решения

Пример 2.7.10. Найдите область определения функций:

1)
$$y = \frac{x^2 - 5x + 6}{x^2 - x}$$
;

2)
$$y = \ln(x-5) + \frac{8}{x-6}$$
;

3)
$$y = \sin 2x - 2^x$$
;

4)
$$v = tgx + (x-2)^2$$
:

5)
$$y = \frac{2x+4}{\sqrt{x^2-x-12}}$$

Пример 2.7.11. Определите четность, нечетность функций:

$$1) y = \cos x + x \sin x;$$

2)
$$y = x^3 + 2x$$
;

3)
$$y = x^4 - 2x^2 + 3$$
;

4)
$$y = \frac{x}{\sin x}$$
;

5)
$$y = \left(\frac{1}{2}\right)^x - 2^x$$
;

6)
$$y = \ln \cos 2x + \frac{8}{x-6}$$
;

7)
$$v = x^2 + 3x - 1$$

Пример 2.7.12. Постройте графики функций:

1)
$$y = 2\cos\left(x + \frac{\pi}{6}\right) - 2$$
;

2)
$$y = -3\sin\left(x - \frac{\pi}{3}\right) + 1$$
;

3)
$$y = -2\cos\left(x + \frac{\pi}{4}\right) + 2$$
;

4)
$$y = 3\sin\left(x + \frac{\pi}{3}\right) - 1$$

$$5) \ \ y = |x^2 - 5x + 6|$$

Пример 2.7.13. Вычислите пределы функций:

1)
$$\lim_{x\to\infty}\frac{x^2-25}{x^2-3x-1}$$
;

1)
$$\lim_{x \to \infty} \frac{x^2 - 25}{x^2 - 3x - 1}$$
; 2) $\lim_{x \to \infty} \frac{x - 2}{x^2 - 6x + 5}$;

3)
$$\lim_{x\to\infty}\frac{x^3-5}{x^2+2x-3}$$
;

4)
$$\lim_{x\to 5} \frac{x^2-25}{x^2-6x+5}$$
;

4)
$$\lim_{x \to 5} \frac{x^2 - 25}{x^2 - 6x + 5}$$
; 5) $\lim_{x \to 1} \frac{2x^2 + 4x - 6}{x^2 + 2x - 3}$;

6)
$$\lim_{x\to 2} \frac{3x^2-2x-8}{2x^2+x-10}$$
;

7)
$$\lim_{x\to 3} \frac{9-x^2}{\sqrt{3x}-3}$$

7)
$$\lim_{x \to 3} \frac{9 - x^2}{\sqrt{3x} - 3}$$
; 8) $\lim_{x \to 3} \frac{\sqrt{x + 13} - 2\sqrt{x + 1}}{x^2 - 9}$; 9) $\lim_{x \to 8} \frac{x^2 - 64}{\sqrt{9 + 2x} - 5}$;

9)
$$\lim_{x\to 8} \frac{x^2-64}{\sqrt{9+2x}-5}$$
;

10)
$$\lim_{x\to 4} \frac{\sqrt{x}-2}{x^2-3x-4}$$
; 11) $\lim_{x\to 0} \frac{\sin 7x}{x^2+x}$;

11)
$$\lim_{x\to 0} \frac{\sin 7x}{x^2 + x}$$
;

12)
$$\lim_{x\to 0} \frac{\sin 4x}{\sqrt{1+x}-1}$$
;

13)
$$\lim_{x\to 0} \frac{\ln(1+x^2)}{\sin^2 3x}$$

13)
$$\lim_{x\to 0} \frac{\ln(1+x^2)}{\sin^2 3x}$$
; 14) $\lim_{x\to 0} \frac{\ln(1-8x)}{\sin 2x}$;

$$15) \lim_{x\to 0} \frac{\sqrt{4+x}-2}{3arctgx};$$

$$16) \lim_{x\to 0} \frac{e^{3x}-1}{\arcsin 3x};$$

16)
$$\lim_{x\to 0} \frac{e^{3x}-1}{\arcsin 3x}$$
; 17) $\lim_{x\to 0} \frac{1-\sqrt{\cos x}}{x\sin 3x}$;

18)
$$\lim_{x \to \frac{1}{2}} \frac{arctg(2x-1)}{4x^2-1}$$

19)
$$\lim_{x \to -2} \frac{\arcsin(x+2)}{x^2+2x}$$
; 20) $\lim_{x \to 0} \frac{ctg3x}{\sin 3x}$;

$$20) \lim_{x\to 0}\frac{ctg3x}{\sin 3x};$$

21)
$$\lim_{x\to\infty} \left(\frac{x+3}{x-2}\right)^{x+4}$$
;

$$22) \lim_{x\to\infty} \left(\frac{x+4}{x+2}\right)^x$$

23)
$$\lim_{x\to\infty} \left(\frac{x^2+x+1}{x^2+x-2}\right)^{-x^2}$$
;

22)
$$\lim_{x\to\infty} \left(\frac{x+4}{x+2}\right)^x$$
; 23) $\lim_{x\to\infty} \left(\frac{x^2+x+1}{x^2+x-2}\right)^{-x^2}$; 24) $\lim_{x\to\infty} \left(\frac{2x^2+2x+3}{2x^2+2x+1}\right)^{3x^2-7}$;

25)
$$\lim_{x\to 0} \frac{e^{3x}-1}{e^{5x}-1}$$

25)
$$\lim_{x\to 0} \frac{e^{3x}-1}{e^{5x}-1}$$
; 25) $\lim_{x\to 0} \frac{2^x-1}{3^x-1}$;

26)
$$\lim_{x \to 0} \frac{\ln(1 + \sin x)}{2^{\sin 3x} - 1}$$

Пример 2.7.14. Найдите точки разрыва функции, если они существуют.

Выполните чертеж:

1)
$$y = \begin{cases} -x^2 + 2, & x \le 1 \\ x, & 1 < x \le 3 \end{cases}$$
;

1)
$$y = \begin{cases} -x^2 + 2, & x \le 1 \\ x, & 1 < x \le 3 \\ 2, & x > 3 \end{cases}$$
; 2) $y = \begin{cases} tgx, & x \le 0 \\ -(x-1)^2, & 0 < x \le 2 \\ x-3, & x > 2 \end{cases}$

ГЛАВА III. СОДЕРЖАНИЕ КОНТРОЛЬНОЙ РАБОТЫ № 1

Пример оформления титульного листа контрольной работы можно посмотреть на информационном стенде кафедры МиЕ. Вариант контрольной работы выбирается по последним двум цифрам номера зачетки (см. таблицу). Контрольную работу необходимо выполнить и сдать на кафедру. Допуском к сдаче экзамена служит зачтенная контрольная работа.

Две последние цифры номера зачетной	№ варианта
книжки	
01; 11; 21; 31; 41	1
02; 12; 22; 32; 42	2
03; 13; 23; 33; 43	3
04; 14; 24; 34; 44	4
05; 15; 25; 35; 45	5
06; 16; 26; 36; 46	6
07; 17; 27; 37; 47	7
08; 18; 28; 38; 48	8
09; 19; 29; 39; 49	9
10; 20; 30; 40; 50	10
51; 61; 71; 81; 91	11
52; 62; 72; 82; 92	12
53; 63; 73; 83; 93	13
54; 64; 74; 84; 94	14
55; 65; 75; 85; 95	15
56; 66; 76; 86; 96	16
57; 67; 77; 87; 97	17
58; 68; 78; 88; 98	18
59; 69; 79; 89; 99	19
60; 70; 80; 90; 00	20

1. Найдите пределы функций

1).
$$\lim_{x \to x_0} \frac{2x^2 - 5x - 3}{3x^2 - 4x - 15}$$
, при a) $x_0 = 2$, б) $x_0 = 3$, в) $x_0 = \infty$;

2).
$$\lim_{x\to 4} \frac{\sqrt{x-1}-\sqrt{7-x}}{x-4}$$
; 3). $\lim_{x\to 0} \frac{3x}{\arctan 4x}$; 4) $\lim_{x\to 1} \frac{2^{3x}-8}{\sin(x-1)}$

3).
$$\lim_{x\to 0} \frac{3x}{\arctan 4x};$$

4)
$$\lim_{x\to 1} \frac{2^{3x}-8}{\sin(x-1)}$$

5).
$$\lim_{x\to\infty} \left(\frac{2x-3}{2x+5}\right)^{3x-1}$$
.

2. Задана функция y=f(x). Найдите точки разрыва функции, если они существуют, определите вид разрыва. Выполните схематичный чертеж:

a)
$$y = \begin{cases} x+4, & x<-1\\ x^2+2, & -1 \le x<1\\ 2x, & x \ge 1 \end{cases}$$
 6) $y = 2^{\frac{1}{x-1}}$

$$\delta) \ y = 2^{\frac{1}{x-1}}$$

3. Постройте график функции $y = a\cos(x-b) + c$ преобразованием графика функции $y = \cos x$: $y = \frac{3}{2}\cos(x+3) + 2$.

Вариант 2

1. Найдите пределы функций

1).
$$\lim_{x \to x_0} \frac{4x^2 - 7x - 2}{2x^2 - x - 6}$$
, при а) $x_0 = 0$, б) $x_0 = 2$, в) $x_0 = \infty$;

2).
$$\lim_{x\to 2} \frac{x-2}{\sqrt{x+2}-\sqrt{6-x}}$$
; 3). $\lim_{x\to 0} \frac{\operatorname{tg} 2x}{\sin 5x}$; 4) $\lim_{x\to 1} \frac{e^{4x}-e^4}{\operatorname{arctg}(x-1)}$

3).
$$\lim_{x\to 0} \frac{\operatorname{tg} 2x}{\sin 5x};$$

4)
$$\lim_{x \to 1} \frac{e^{4x} - e^4}{\arctan(x - 1)}$$

5).
$$\lim_{x \to \infty} \left(\frac{3x+2}{3x-4} \right)^{3x-3}.$$

2. Задана функция y=f(x). Найдите точки разрыва функции, если они существуют, определите вид разрыва. Выполните схематичный чертеж:

a)
$$y = \begin{cases} x+2, & x \le -1 \\ x^2+2, & -1 \le x \le 1 \\ -x+3, & x > 1 \end{cases}$$

6)
$$y = 2^{\frac{1}{x-2}}$$

3. Постройте график функции $y = a\cos(x - b) + c$ преобразованием графика функции $y = \cos x$: $y = -2\cos(x + \frac{\pi}{4}) - 1$.

1. Найдите пределы функций

1).
$$\lim_{x \to x_0} \frac{2x^2 + 5x - 3}{x^2 + 5x + 6}$$
, при а) $x_0 = 3$, б) $x_0 = -3$, в) $x_0 = \infty$;

2).
$$\lim_{x \to 5} \frac{\sqrt{x-1} - \sqrt{9-x}}{x-5}$$
; 3). $\lim_{x \to 0} \frac{\operatorname{ctg} 3x}{\operatorname{ctg} 6x}$; 4) $\lim_{x \to -1} \frac{e^x - e^{-1}}{\operatorname{arc} \sin(x+1)}$

3).
$$\lim_{x\to 0} \frac{\operatorname{ctg} 3x}{\operatorname{ctg} 6x};$$

4)
$$\lim_{x \to -1} \frac{e^x - e^{-1}}{\arcsin(x+1)}$$

$$5). \lim_{x\to\infty}\left(\frac{x-6}{x-4}\right)^{4x+2}.$$

2. Задана функция y=f(x). Найдите точки разрыва функции, если они существуют, определите вид разрыва. Выполните схематичный чертеж:

a)
$$y = \begin{cases} -x, & x \le 0 \\ -(x-1)^2, & 0 < x < 2 \end{cases}$$
 $(x - 3)^{-1}$ $(x - 3)^{-1}$

$$6) y = 3^{\frac{1}{x+1}}$$

3. Постройте график функции $y = a\cos(x - b) + c$ преобразованием графика функции $y = \cos x$: $y = 2\cos(x + \frac{\pi}{2}) - 1$.

Вариант 4

1. Найдите пределы функций

1).
$$\lim_{x \to x_0} \frac{3x^2 + 11x + 10}{2x^2 + 5x + 2}$$
, при а) $x_0 = -3$, б) $x_0 = -2$, в) $x_0 = \infty$;

2).
$$\lim_{x\to 2} \frac{x-2}{\sqrt{x+3}-\sqrt{7-x}}$$
; 3). $\lim_{x\to 0} \frac{4x}{\arcsin 2x}$; 4) $\lim_{x\to -1} \frac{5^{2x}-5^{-2}}{\operatorname{tg}(x+1)}$

3).
$$\lim_{x\to 0} \frac{4x}{\arcsin 2x}$$
;

4)
$$\lim_{x \to -1} \frac{5^{2x} - 5^{-2}}{\text{tg}(x+1)}$$

5).
$$\lim_{x\to\infty} \left(\frac{5x+3}{5x+6}\right)^{x-1}$$
.

2. Задана функция y=f(x). Найдите точки разрыва функции, если они существуют, определите вид разрыва. Выполните схематичный чертеж:

a)
$$y = \begin{cases} \cos x, & x \le 0 \\ x^2 + 1, & 0 < x < 1; \\ x, & x \ge 1 \end{cases}$$

$$6) y = 3^{\frac{1}{x+2}}$$

3. Постройте график функции $y = a\cos(x - b) + c$ преобразованием графика функции $y = \cos x$: $y = -\cos(x + \frac{\pi}{6}) + 3$.

1. Найдите пределы функций

1).
$$\lim_{x \to x_0} \frac{3x^2 - 14x + 8}{2x^2 - 7x - 4}$$
, при а) $x_0 = 2$, б) $x_0 = 4$, в) $x_0 = \infty$;

2).
$$\lim_{x \to -2} \frac{\sqrt{x+7} - \sqrt{3-x}}{x+2}$$
; 3). $\lim_{x \to 0} (\operatorname{tg} 2x \cdot \operatorname{ctg} 3x)$; 4) $\lim_{x \to 2} \frac{3^{2x} - 81}{\operatorname{arctg}(x-2)}$

3).
$$\lim_{x\to 0} (\operatorname{tg} 2x \cdot \operatorname{ctg} 3x);$$

4)
$$\lim_{x\to 2} \frac{3^{2x} - 81}{\arctan(x-2)}$$

5).
$$\lim_{x\to\infty} \left(\frac{2x+3}{2x-3}\right)^{3x+5}$$
.

2. Задана функция y=f(x). Найдите точки разрыва функции, если они существуют, определите вид разрыва. Выполните схематичный чертеж:

a)
$$y = \begin{cases} -x, & x \le 0 \\ x^2, & 0 < x \le 2; \\ x+1, & x > 2 \end{cases}$$
 6) $y = \left(\frac{1}{2}\right)^{\frac{1}{x-1}}$

$$6) y = \left(\frac{1}{2}\right)^{\frac{1}{x-1}}$$

3. Постройте график функции $y = a\cos(x - b) + c$ преобразованием графика функции $y = \cos x$: $y = -\frac{1}{2}\cos(x - \frac{\pi}{4}) + 1$.

Вариант 6

1. Найдите пределы функций

1).
$$\lim_{x \to x_0} \frac{4x^2 - 25x + 25}{2x^2 - 15x + 25}$$
, при а) $x_0 = 2$, б) $x_0 = 5$, в) $x_0 = \infty$;

2).
$$\lim_{x \to -1} \frac{x+1}{\sqrt{x+5} - \sqrt{3-x}}$$
; 3). $\lim_{x \to 0} (\sin 6x \cdot \cot 2x)$; 4) $\lim_{x \to 2} \frac{e^{3x} - e^{6}}{\arcsin(x-2)}$

3).
$$\lim_{x\to 0} (\sin 6x \cdot \operatorname{ctg} 2x);$$

4)
$$\lim_{x\to 2} \frac{e^{3x} - e^6}{\arcsin(x-2)}$$

5).
$$\lim_{x\to\infty} \left(\frac{x-7}{x+3}\right)^{5x+3}$$
.

2. Задана функция y=f(x). Найдите точки разрыва функции, если они существуют, определите вид разрыва. Выполните схематичный чертеж:

a)
$$y = \begin{cases} -x, & x \le 0 \\ \sin x, & 0 < x \le \pi; \\ x - 2, & x > \pi \end{cases}$$
 6) $y = \left(\frac{1}{2}\right)^{\frac{1}{x-2}}$

3. Постройте график функции $y = a \sin(x - b) + c$ преобразованием графика функции $y = \sin x$: $y = \frac{3}{2} \sin (x + \frac{\pi}{6}) + 2$.

1. Найдите пределы функций

1).
$$\lim_{x \to x_0} \frac{7x^2 + 26x - 8}{2x^2 + x - 28}$$
, при а) $x_0 = 1$, б) $x_0 = -4$, в) $x_0 = \infty$;

2).
$$\lim_{x\to 2} \frac{\sqrt{x+4}-\sqrt{8-x}}{x-2}$$
; 3). $\lim_{x\to 0} \frac{\arctan 7x}{5x}$; 4) $\lim_{x\to -2} \frac{4^{-3x}-4^6}{\sin(x+2)}$

3).
$$\lim_{x\to 0} \frac{\arctan 7x}{5x};$$

4)
$$\lim_{x \to -2} \frac{4^{-3x} - 4^6}{\sin(x+2)}$$

5).
$$\lim_{x\to\infty} \left(\frac{2x-3}{2x+3}\right)^{4x-5}$$
.

2. Задана функция y=f(x). Найдите точки разрыва функции, если они существуют, определите вид разрыва. Выполните схематичный чертеж:

a)
$$y = \begin{cases} -(x+1), & x \le -1 \\ (x+1)^2, & -1 < x \le 0; \\ x, & x > 0 \end{cases}$$
 $\delta y = \left(\frac{1}{3}\right)^{\frac{1}{x+1}}$

$$6) y = \left(\frac{1}{3}\right)^{\frac{1}{x+1}}$$

3. Постройте график функции $y = a \sin(x - b) + c$ преобразованием графика функции $y = \sin x$: $y = -\frac{3}{2} \sin (x + \frac{\pi}{4}) + 2$.

Вариант 8

1. Найдите пределы функций

1).
$$\lim_{x \to x_0} \frac{2x^2 + 15x + 25}{x^2 + 15x + 50}$$
, при а) $x_0 = 5$, б) $x_0 = -5$, в) $x_0 = \infty$;

2).
$$\lim_{x \to 4} \frac{x - 4}{\sqrt{x - 2} - \sqrt{6 - x}}$$
; 3). $\lim_{x \to 0} \frac{\operatorname{tg} 5x}{\operatorname{tg} 4x}$; 4) $\lim_{x \to -2} \frac{e^{-2x} - e^4}{\operatorname{arctg}(x + 2)}$

3).
$$\lim_{x\to 0}\frac{\operatorname{tg} 5x}{\operatorname{tg} 4x};$$

4)
$$\lim_{x \to -2} \frac{e^{-2x} - e^4}{\arctan(x+2)}$$

5).
$$\lim_{x\to\infty} \left(\frac{3x-1}{3x+6}\right)^{2x+3}.$$

2. Задана функция y=f(x). Найдите точки разрыва функции, если они существуют, определите вид разрыва. Выполните схематичный чертеж:

3. Постройте график функции $y = a \sin(x - b) + c$ преобразованием графика функции $y = \sin x$: $y = -2\sin(x+2) + 1$.

1. Найдите пределы функций

1).
$$\lim_{x \to x_0} \frac{3x^2 + 5x - 8}{2x^2 + 3x - 5}$$
, при а) $x_0 = -2$, б) $x_0 = 1$, в) $x_0 = \infty$;

2).
$$\lim_{x \to 3} \frac{\sqrt{x-2} - \sqrt{4-x}}{x-3}$$
; 3). $\lim_{x \to 0} \frac{\sin 3x}{\tan 2x}$; 4) $\lim_{x \to 3} \frac{6^{x+1} - 6^4}{\arcsin(x-3)}$

3).
$$\lim_{x\to 0}\frac{\sin 3x}{\operatorname{tg} 2x};$$

4)
$$\lim_{x\to 3} \frac{6^{x+1}-6^4}{\arcsin(x-3)}$$

5).
$$\lim_{x\to\infty} \left(\frac{5x-3}{5x+4}\right)^{x+4}$$
.

2. Задана функция y=f(x). Найдите точки разрыва функции, если они существуют, определите вид разрыва. Выполните схематичный чертеж:

а)
$$y = \begin{cases} -2x, & x \le 0 \\ x^2 + 1, & 0 < x \le 1; \end{cases}$$
 б) $y = 4^{\frac{1}{x+3}}$

$$\delta) \ \ y = 4^{\frac{1}{x+3}}$$

3. Постройте график функции $y = a \sin(x - b) + c$ преобразованием графика функции $y = \sin x$: $y = -3\sin(x + \frac{\pi}{6}) + 2$.

Вариант 10

1. Найдите пределы функций

1).
$$\lim_{x \to x_o} \frac{6x^2 + 13x + 7}{3x^2 + 8x + 5}$$
, при а) $x_o = -2$, б) $x_o = -1$, в) $x_o = \infty$;

2).
$$\lim_{x\to 6} \frac{\sqrt{x-3}-\sqrt{9-x}}{x-6}$$
; 3). $\lim_{x\to 0} \frac{\arcsin 8x}{4x}$; 4) $\lim_{x\to 3} \frac{e^{2x}-e^6}{\operatorname{tg}(x-3)}$

3).
$$\lim_{x\to 0} \frac{\arcsin 8x}{4x};$$

4)
$$\lim_{x\to 3} \frac{e^{2x} - e^6}{\text{tg}(x-3)}$$

5).
$$\lim_{x\to\infty} \left(\frac{4x+1}{4x-3}\right)^{5x-1}.$$

2. Задана функция y=f(x). Найдите точки разрыва функции, если они существуют, определите вид разрыва. Выполните схематичный чертеж:

a)
$$y = \begin{cases} -2x, & x \le 0 \\ \sqrt{x}, & 0 < x < 4; \\ 1, & x \ge 4 \end{cases}$$
 6) $y = \left(\frac{1}{4}\right)^{\frac{1}{x-1}}$

$$\delta) \ \ y = \left(\frac{1}{4}\right)^{\frac{1}{x-1}}$$

3. Постройте график функции $y = a \sin(x - b) + c$ преобразованием графика функции $y = \sin x$: $y = -2\sin (x + \frac{\pi}{2}) - 2$.

1. Найдите пределы функций

1).
$$\lim_{x \to x_0} \frac{2x^2 - 2x - 24}{3x^2 - 9x - 12}$$
, при а) $x_0 = 2$, б) $x_0 = 4$, в) $x_0 = \infty$;

2).
$$\lim_{x\to 1} \frac{\sqrt{4-x}-\sqrt{2+x}}{1-x}$$
; 3). $\lim_{x\to 0} \frac{\arcsin 3x}{\arctan 5x}$; 4). $\lim_{x\to -3} \frac{6^{1-x}-6^4}{\sin(x+3)}$

3).
$$\lim_{x\to 0} \frac{\arcsin 3x}{\arctan 5x};$$

4).
$$\lim_{x \to -3} \frac{6^{1-x} - 6^4}{\sin(x+3)}$$

5).
$$\lim_{x\to\infty} \left(\frac{2x+8}{2x-3}\right)^{3x+1}$$
.

2. Задана функция y=f(x). Найдите точки разрыва функции, если они существуют, определите вид разрыва. Выполните схематичный чертеж:

a)
$$y = \begin{cases} \sin x, & x \le 0 \\ x^3, & 0 < x < 1; \\ 2x + 1, & x \ge 1 \end{cases}$$
 6) $y = 2^{\frac{1}{1-x}}$

6)
$$y = 2^{\frac{1}{1-x}}$$

3. Постройте график функции $y = a\cos(x - b) + c$ преобразованием графика функции $y = \cos x$: $y = \frac{3}{2}\cos(x-2) + 1$.

Вариант 12

1. Найдите пределы функций

1).
$$\lim_{x \to x_0} \frac{4x^2 + 4x - 8}{3x^2 + 6x - 9}$$
, при а) $x_0 = 0$, б) $x_0 = 1$, в) $x_0 = \infty$;

2).
$$\lim_{x\to 3} \frac{x-3}{\sqrt{5-x}-\sqrt{x-1}}$$
; 3). $\lim_{x\to 0} \frac{\operatorname{tg} 2x}{\arccos 5x}$; 4) $\lim_{x\to -3} \frac{e^{2-x}-e^5}{\sin(2x+6)}$

3).
$$\lim_{x\to 0} \frac{\operatorname{tg} 2x}{\arcsin 5x};$$

4)
$$\lim_{x \to -3} \frac{e^{2-x} - e^5}{\sin(2x+6)}$$

5).
$$\lim_{x\to\infty} \left(\frac{3x-4}{3x+5}\right)^{2x+4}.$$

2. Задана функция y=f(x). Найдите точки разрыва функции, если они существуют, определите вид разрыва. Выполните схематичный чертеж:

a)
$$y = \begin{cases} x^3, & x \le 0 \\ 2x - x^2, & 0 < x \le 2; \\ 2x - 3, & x > 2 \end{cases}$$
 6) $y = 2^{\frac{1}{2-x}}$

$$6) \ \ y = 2^{\frac{1}{2-x}}$$

3. Постройте график функции $y = a\cos(x - b) + c$ преобразованием графика функции $y = \cos x$: $y = -\cos(x + \frac{\pi}{6}) - 1$.

1. Найдите пределы функций

1).
$$\lim_{x \to x_0} \frac{2x^2 - 2x - 4}{x^2 + 5x + 4}$$
, при а) $x_0 = 3$, б) $x_0 = -1$, в) $x_0 = \infty$;

2).
$$\lim_{x\to 4} \frac{\sqrt{6-x}-\sqrt{x-2}}{x-4}$$
; 3). $\lim_{x\to 0} \frac{\operatorname{ctg} 2x}{\operatorname{ctg} 3x}$; 4). $\lim_{x\to 2} \frac{7^{x-4}-7^{-2}}{\arcsin(x-2)}$

3).
$$\lim_{x\to 0}\frac{\operatorname{ctg} 2x}{\operatorname{ctg} 3x};$$

4).
$$\lim_{x\to 2} \frac{7^{x-4}-7^{-2}}{\arcsin(x-2)}$$

5).
$$\lim_{x\to\infty} \left(\frac{x+3}{x-4}\right)^{5x+2}$$
.

2. Задана функция y=f(x). Найдите точки разрыва функции, если они существуют, определите вид разрыва. Выполните схематичный чертеж:

a)
$$y = \begin{cases} \cos x, & x \le 0 \\ x^2 + 1, & 0 < x < 2; \\ 2x - 3, & x \ge 2 \end{cases}$$
 6) $y = \left(\frac{1}{2}\right)^{\frac{1}{1-x}}$

$$\delta y = \left(\frac{1}{2}\right)^{\frac{1}{1-x}}$$

3. Постройте график функции $y = a\cos(x - b) + c$ преобразованием графика функции $y = \cos x$: $y = -2\cos(x + \frac{\pi}{4}) + 3$.

Вариант 14

1. Найдите пределы функций

1).
$$\lim_{x\to x_0} \frac{3x^2 - 9x - 12}{2x^2 - 2x - 4}$$
, при а) $x_0 = -3$, б) $x_0 = -1$, в) $x_0 = \infty$;

2).
$$\lim_{x\to 2} \frac{x-2}{\sqrt{x+4}-\sqrt{8-x}}$$
; 3). $\lim_{x\to 0} \frac{arctg4x}{arcsin2x}$; 4). $\lim_{x\to 2} \frac{e^{4-x}-e^2}{tg(2x-4)}$

3).
$$\lim_{x\to 0} \frac{arctg4x}{arcsin2x}$$
;

4).
$$\lim_{x\to 2} \frac{e^{4-x}-e^2}{\operatorname{tg}(2x-4)}$$

5).
$$\lim_{x\to\infty} \left(\frac{5x-3}{5x-2}\right)^{2x-1}.$$

2. Задана функция y=f(x). Найдите точки разрыва функции, если они существуют, определите вид разрыва. Выполните схематичный чертеж:

a)
$$y = \begin{cases} \sin x, & x \le 0 \\ x^2, & 0 < x < 1; \\ 2x + 4, & x \ge 1 \end{cases}$$
 6) $y = \left(\frac{1}{2}\right)^{\frac{1}{2-x}}$

$$\delta) \ \ y = \left(\frac{1}{2}\right)^{\frac{1}{2-x}}$$

3. Постройте график функции $y = a\cos(x - b) + c$ преобразованием графика функции $y = \cos x$: $y = -\cos(x+1) + 2$.

1. Найдите пределы функций

1).
$$\lim_{x \to x_0} \frac{3x^2 + 6x - 9}{2x^2 - 2x - 24}$$
, при а) $x_0 = 2$, б) $x_0 = -3$, в) $x_0 = \infty$;

2).
$$\lim_{x \to -2} \frac{\sqrt{x+9} - \sqrt{5-x}}{x+2}$$
; 3). $\lim_{x \to 0} \frac{\ln(1-x^2)}{\sin^2 3x}$; 4). $\lim_{x \to 1} \frac{8^{2x-1} - 8}{\arctan(3x-3)}$

3).
$$\lim_{x\to 0} \frac{\ln(1-x^2)}{\sin^2 3x}$$
;

4).
$$\lim_{x\to 1} \frac{8^{2x-1}-8}{\arctan(3x-3)}$$

5).
$$\lim_{x\to\infty} \left(\frac{2x-3}{2x+8}\right)^{x-1}$$
.

2. Задана функция y=f(x). Найдите точки разрыва функции, если они существуют, определите вид разрыва. Выполните схематичный чертеж:

a)
$$y = \begin{cases} -(x+2)^2, & x \le 0 \\ -3x - 4, & 0 < x < 2; \end{cases}$$
 6) $y = 3^{\frac{1}{1-x}}$

6)
$$y = 3^{\frac{1}{1-x}}$$

3. Постройте график функции $y = a\cos(x - b) + c$ преобразованием графика функции $y = \cos x$: $y = -\frac{1}{2}\cos(x-3) + 1$.

Вариант 16

1. Найдите пределы функций

1).
$$\lim_{x \to x_0} \frac{2x^2 + 6x - 8}{x^2 - 4x + 3}$$
, при а) $x_0 = 2$, б) $x_0 = 1$, в) $x_0 = \infty$;

2).
$$\lim_{x \to -1} \frac{x+1}{\sqrt{x+7} - \sqrt{5-x}}$$
; 3). $\lim_{x \to 0} \frac{\arcsin 3x}{\ln(1+2x)}$; 4) $\lim_{x \to -1} \frac{e^{2x+1} - e^{-1}}{\sin(2x+2)}$

3).
$$\lim_{x\to 0} \frac{\arcsin 3x}{\ln(1+2x)}$$

4)
$$\lim_{x\to -1} \frac{e^{2x+1}-e^{-1}}{\sin(2x+2)}$$

5).
$$\lim_{x\to\infty} \left(\frac{x-4}{x+1}\right)^{3x+1}$$
.

2. Задана функция y=f(x). Найдите точки разрыва функции, если они существуют, определите вид разрыва. Выполните схематичный чертеж:

a)
$$y = \begin{cases} -x, & x \le 0 \\ tgx, & 0 < x \le \frac{\pi}{4} \\ 2x + 3, & x > \frac{\pi}{4} \end{cases}$$
 6) $y = \left(\frac{1}{3}\right)^{\frac{1}{2-x}}$

3. Постройте график функции $y = a \sin(x - b) + c$ преобразованием графика функции $y = \sin x$: $y = -2\sin(x+1) + 2$.

1. Найдите пределы функций

1).
$$\lim_{x \to x_0} \frac{7x^2 + 21x + 14}{2x^2 + 8x + 6}$$
, при а) $x_0 = 1$, б) $x_0 = -1$, в) $x_0 = \infty$;

2).
$$\lim_{x\to 2} \frac{\sqrt{x+5}-\sqrt{9-x}}{x-2}$$
; 3). $\lim_{x\to 0} \frac{\arctan^2 7x}{1-\cos x}$; 4) $\lim_{x\to 5} \frac{9^{x-3}-81}{\tan(x-5)}$

3).
$$\lim_{x\to 0} \frac{\arctan^2 7x}{1-\cos x}$$
;

4)
$$\lim_{x\to 5} \frac{9^{x-3}-81}{\text{tg}(x-5)}$$

5).
$$\lim_{x\to\infty} \left(\frac{2x-2}{2x+1}\right)^{x+5}$$
.

2. Задана функция y=f(x). Найдите точки разрыва функции, если они существуют, определите вид разрыва. Выполните схематичный чертеж:

a)
$$y = \begin{cases} -(x+1)^2, & x \le -x \\ x+1, & -1 < x \le 0 \\ 2, & x > 0 \end{cases}$$

$$\delta) \ \ y = 4^{\frac{1}{3-x}}$$

3. Постройте график функции $y = a \sin(x - b) + c$ преобразованием графика функции $y = \sin x$: $y = -\frac{3}{2} \sin (x+2)-2$.

Вариант 18

1. Найдите пределы функций

1).
$$\lim_{x \to x_0} \frac{2x^2 + 4x - 16}{3x^2 - 3x - 6}$$
, при а) $x_0 = 5$, б) $x_0 = 2$, в) $x_0 = \infty$;

2).
$$\lim_{x\to 4} \frac{x-4}{\sqrt{x-1}-\sqrt{7-x}}$$
; 3). $\lim_{x\to 0} \frac{\operatorname{tg} 5x}{\ln(1-4x)}$; 4) $\lim_{x\to 3} \frac{e^{2-x}-e^{-1}}{\arcsin(x-3)}$

3).
$$\lim_{x\to 0} \frac{\lg 5x}{\ln(1-4x)}$$
;

4)
$$\lim_{x\to 3} \frac{e^{2-x} - e^{-1}}{\arcsin(x-3)}$$

5).
$$\lim_{x \to \infty} \left(\frac{3x - 2}{3x + 1} \right)^{2x + 4}.$$

2. Задана функция y=f(x). Найдите точки разрыва функции, если они существуют, определите вид разрыва. Выполните схематичный чертеж:

ют, определите вид разрыва. Выполните схемати

a)
$$y = \begin{cases} -x+2, & x \le 0 \\ -x^2+2, & 0 < x \le 3 \\ 2x, & x > 3 \end{cases}$$

б) $y = \left(\frac{1}{4}\right)^{\frac{1}{3-x}}$

$$\delta) \ \ y = \left(\frac{1}{4}\right)^{\frac{1}{3-x}}$$

3. Постройте график функции $y = a \sin(x - b) + c$ преобразованием графика функции $y = \sin x$: $y = -2\sin(x+1) + 2$.

1. Найдите пределы функций

1).
$$\lim_{x\to x_0} \frac{3x^2 + 21x + 36}{2x^2 + 6x - 8}$$
, при а) $x_0 = -2$, б) $x_0 = -4$, в) $x_0 = \infty$;

2).
$$\lim_{x\to 3} \frac{\sqrt{x-1}-\sqrt{5-x}}{x-3}$$
; 3). $\lim_{x\to 0} \frac{\sin 3x}{\ln(1-2x)}$; 4) $\lim_{x\to -3} \frac{12^{5-x}-12^8}{\arctan(x+3)}$

3).
$$\lim_{x\to 0} \frac{\sin 3x}{\ln(1-2x)}$$
;

4)
$$\lim_{x \to -3} \frac{12^{5-x} - 12^8}{\arctan(x+3)}$$

5).
$$\lim_{x \to \infty} \left(\frac{4x - 3}{4x + 4} \right)^{3x + 4}.$$

2. Задана функция y=f(x). Найдите точки разрыва функции, если они существуют, определите вид разрыва. Выполните схематичный чертеж:

a)
$$y = \begin{cases} -1, & x \le -2 \\ 2x - 4, & -2 < x \le 0 \\ -(x - 2)^2, & x > 0 \end{cases}$$
 6) $y = 4^{\frac{1}{5-x}}$

$$6) \ \ y = 4^{\frac{1}{5-x}}$$

3. Постройте график функции $y = a \sin(x - b) + c$ преобразованием графика функции $y = \sin x$: $y = -3\sin(x+1) + 2$.

Вариант 20

1. Найдите пределы функций

1).
$$\lim_{x \to x_0} \frac{2x^2 + 12x + 10}{3x^2 + 12x - 15}$$
, при а) $x_0 = -2$, б) $x_0 = -5$, в) $x_0 = \infty$;

2).
$$\lim_{x\to 6} \frac{\sqrt{x-4}-\sqrt{8-x}}{x-6}$$
; 3). $\lim_{x\to 0} \frac{\arcsin^2 8x}{1-\cos 4x}$; 4) $\lim_{x\to 4} \frac{e^{2x-7}-e}{\operatorname{tg}(x-4)}$

3).
$$\lim_{x\to 0} \frac{\arcsin^2 8x}{1-\cos 4x}$$
;

4)
$$\lim_{x\to 4} \frac{e^{2x-7}-e}{\operatorname{tg}(x-4)}$$

5).
$$\lim_{x\to\infty} \left(\frac{4x+2}{4x-4}\right)^{5x-2}.$$

2. Задана функция y=f(x). Найдите точки разрыва функции, если они существуют, определите вид разрыва. Выполните схематичный чертеж:

a)
$$y = \begin{cases} 1, & x \le -2 \\ x, & -2 < x < 0 \end{cases}$$
 $\delta y = \left(\frac{1}{4}\right)^{\frac{1}{5-x}}$

$$\delta) \ \ y = \left(\frac{1}{4}\right)^{\frac{1}{5-x}}$$

3. Постройте график функции $y = a \sin(x - b) + c$ преобразованием графика функции $y = \sin x$: $y = -2\sin (x+2)-2$.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Бугров, Я. С. Высшая математика [Текст] : сборник задач по высшей математике / Я. С. Бугров, С. М. Никольский. 3-е изд., испр. и доп. Ростовна-Дону : Издательство «Феникс», 1997. 352 с.
- 2. Высшая математика [Текст] : учебно-методическое пособие / под ред. Л. 3. Румшинского. Москва, 1990. 102 с.
- 3. Высшая математика для экономистов [Текст] : учебник для вузов / под ред. профессора Н. Ш. Кремера. 2-е изд., перераб. и доп. М. : ЮНИТИ, 2002. 471 с.
- 4. Данко, П. Е. Высшая математика в упражнениях и задачах [Текст] : учебное пособие для втузов / П. Е. Данко, А. Г. Попов, Т. Я. Кожевникова. 5-е изд., испр. М. : «Высшая школа», 1999. Часть 1.- 304 с.
- 5. Кузнецов, Л. А. Сборник заданий по высшей математике [Текст] : учебное пособие / Л. А. Кузнецов. 4-е изд.– М. : Издательство «Лань», 2005. 240 с.
- 6. Линейная алгебра и основы математического анализа [Текст] : сборник задач по математике / под ред. А. В. Ефимова, Б. П. Демидовича. М. : Издательство «Наука», 1981. 464 с.
- 7. Лунгу, К. Н. Сборник задач по высшей математике. 1 курс [Текст] / К. Н. Лунгу, Д. Т. Письменный, Ю. А. Шевченко. 2-е изд., испр. М. : Айрис-пресс, 2003.-576 с.
- 8. Лунгу, К. Н. Сборник задач по высшей математике. 2 курс [Текст] / К. Н. Лунгу, В. П. Норин, Д. Т. Письменный, Ю. А. Шевченко / под ред. С. Н. Федина. М. : Айрис-пресс, 2004. 592 с.
- 9. Минорский, В. П. Сборник задач по высшей математике [Текст] / В. П. Минорский. М. : Издательство «Наука», 1964. 360 с.
- 10. Мышкис, А. Д. Лекции по высшей математике [Текст] / А. Д. Мышкис. М. : Издательство «Наука», 1967. 640 с.
- 11. Общий курс высшей математики для экономистов [Текст] : учебник / под ред. В. И. Ермакова. М. : «Инфра М», 2002. 656 с.
- 12. Шипачев, В. С. Высшая математика [Текст] : учебник для вузов / В. С. Шипачев. М. : Высшая школа, 2001. 479 с.
- 13. Шипачев, В. С. Задачник по высшей математике [Текст] : учебное пособие для вузов / В. С. Шипачев. 3-е изд.— М. : Издательство «Высшая школа», 2003. 304 с.

АННА ВИКТОРОВНА ШВАЛЕВА ТАТЬЯНА ПАВЛОВНА ФИЛОНЕНКО

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Введение в математический анализ

Учебно-методическое пособие для студентов технических направлений заочной формы обучения

Подписано	В	печать			
26.09.2013					
Формат 60х90	1/16		Печать офсетная	Учизд.л. 4,5	
Рег.№ 27			Тираж 100 экз.		

Федеральное государственное автономное образовательное учреждение высшего профессионального образования

Национальный исследовательский технологический университет «МИСиС»

Новотроицкий филиал

462359, Оренбургская обл., г. Новотроицк, ул. Фрунзе, 8.

E-mail: nfmisis@yandex.ru

Контактный тел. 8 (3537) 679729.